
Reproducible Research in the

Mathematical Sciences

1

D. Donoho, V. Stodden

Department of Statistics, Stanford University
Stanford, CA 94305

Department of Statistics, Columbia University
New York, NY 10027

1 Introduction

Traditionally, mathematical research was con-
ducted via mental abstraction and manual sym-
bolic manipulation. Mathematical journals pub-
lished theorems and completed proofs, while
other sorts of evidence were gathered privately
and remained in shadow. For example, long af-
ter Riemann had passed away, historians discov-
ered that he had developed advanced techniques
for calculating the Riemann zeta function, and
that his formulation of the Riemann hypothesis
– often depicted as a triumph of pure thought
– was actually based on painstaking numerical
work. In fact Riemann’s computational methods
remained for decades after his death far ahead
of what was available to others. This example
shows that mathematical researchers have been
‘covering their (computational) tracks’ for a long
time.
Times have been changing: on the one hand,

Mathematics has grown into the so-called Math-
ematical Sciences, and in this larger endeavor,
proposing new computational methods takes cen-
ter stage, and documenting the behavior of pro-
posed methods in test cases became an important
part of research activity - witness current pub-
lications throughout the mathematical sciences,
including statistics, optimization, and computer
science. On the other hand, even pure mathemat-
ics has been a↵ected by the trend towards com-
putational evidence; Tom Hales’ brilliant article
Mathematics in the Age of the Turing Machine
points to several examples of important mathe-
matical regularities that were discovered empir-
ically and have driven much mathematical re-
search subsequently, the Birch and Swinnerton-
Dyer conjecture being his lead example. This

1We would like to thank Jennifer Seiler for outstanding
research assistance.

conjecture posits deep relationships between the
zeta function of elliptic curves and the rank of el-
liptic curves, and was discovered by counting the
number of rational points on individual elliptic
curves in the early 1960’s.

We can expect that over time, an ever-
increasing fraction of what we know about math-
ematical structures will be based on computa-
tional experiments, either because our work (in
applied areas) is explicitly about the behavior of
computations, or because (in pure mathematics)
the leading questions of the day concern empirical
regularities uncovered computationally.

Indeed, with the advent of cluster comput-
ing, cloud computing, GPU processor boards and
other computing innovations, it is now possible
for a researcher to direct overwhelming amounts
of computational power at specific problems.
With the advent of mathematical programming
environments like Mathematica, MATLAB, and
Sage, it is possible to easily prototype algorithms
which can then be quickly scaled up using the
cloud. Such direct access to computational power
is an irresistible force. Reflect for a moment
on the fact that the Birch and Swinnerton-Dyer
conjecture was discovered using the rudimentary
computational resources of the early 1960’s. Re-
search in the mathematical sciences can now be
dramatically more ambitious in scale and scope.
This opens very exciting possibilities for discovery
and exploration, as explained in experimental

applied mathematics [VIII.xy].

The expected scaling up of experimental and
computational mathematics is, at the same time,
problematic. Much of the knowledge currently
being generated using computers is not of the
same quality as traditional mathematical knowl-
edge. Mathematicians are very strict and de-
manding when it comes to understanding the ba-
sis of a theorem, the assumptions used, the prior
theorems on which it depends, and the chain of in-
ference that establishes the theorem. As it stands,
the way evidence based on computations is typi-
cally published leaves ‘a great deal to the imag-
ination’ and so computational evidence simply
does not have the same epistemological status as
a rigorously proved theorem.

Algorithms are becoming ever more compli-
cated. Figure 1 shows the number of lines of

1



2

Increase in Total Number of Code Lines

lo
g(

N
um

be
r o

f L
in

es
 o

f C
od

e)

ACM Transactions on Mathematical Software

1960 1968 1977 1986 1995 2003 2012

5
10

15
20

Figure 1: The number of lines of code submit-

ted to ACM Transactions on Mathematical Software

(TOMS), 1960–2012, on a log scale. The proportion

of publications that submitted their code remained

roughly constant at about 1/3, with standard error of

about 0.12, and ACM TOMS consistently published

around 35 articles each year.

code submitted to the ACM journal Transactions
on Mathematical Software (TOMS) from 1960
through 2012. The number of lines submitted has
increased exponentially, from 875 lines in 1960 to
nearly 5 million in 2012, including libraries. The
number of articles with code in TOMS is roughly
constant; individual algorithms are requiring ever
more code, even though modern languages are
ever more expressive.
Algorithms are also being combined in ever

more complicated processing pipelines. Individ-
ual algorithms of the kind that traditionally have
been documented in journal articles increasingly
represent only a small fraction of the code mak-
ing up a computational science project. Scaling
up projects to fully exploit the potential of mod-
ern computing resources requires complex work-
flows to pipeline together numerous algorithms,
with problems broken into pieces and farmed out
to be run on numerous processors, and the re-
sults harvested and combined in project-specific
ways. As a result, a given computational project
may involve much infrastructure not explicitly de-
scribed in journal articles. In that environment,
journal articles become simply advertisements -
pointers to a complex body of software develop-
ment, experimental outcomes, and analyses, in

which there is really no hope that ‘outsiders’ can
understand the full meaning of those summaries.

The computational era seems to be thrust-
ing the mathematical sciences into a situation
where mathematical knowledge in the wide sense,
including also solidly based empirical discover-
ies, is broader and more penetrating but far less
transparent and far less common ‘property’ than
ever. Individual researchers report that over time
they are becoming increasingly uncertain about
what other researchers have done and about the
strength of evidence underlying the results those
other researchers have published.

The phrase mathematical sciences contains a
key to improving the situation. The traditional
laboratory sciences evolved, over hundreds of
years, a set of procedures for enabling the repro-
ducibility of findings in one laboratory by other
laboratories. As the mathematical sciences evolve
towards ever-heavier reliance on computation,
they should likewise develop a discipline for doc-
umenting and sharing algorithms and empirical
mathematical findings. Such a disciplined ap-
proach to scholarly communication in the math-
ematical sciences o↵ers two advantages: (1) pro-
moting scientific progress and (2) resolving un-
certainties and controversies that spread a ‘fog of
uncertainty.’

2 Reproducible Research

We fully expect that, two decades from today,
there will be widely accepted standards for com-
munication of findings in computational mathe-
matics. Such standards are needed so that com-
putational mathematics research can be used and
believed by others.

Today the raw ingredients that could enable
such standards seem to be in place. Problem
solving environments (PSEs) like MATLAB, R,
IPython, Sage, and Mathematica, as well as open
source operating systems and software, now en-
able researchers to share their code and data with
others. While such sharing is not nearly as com-
mon as it should be, we expect that it soon will
be.

Randall J. LeVeque describes well the mo-
ment we are living through; on the one hand,
many computational mathematicians and compu-



3

tational scientists do not work reproducibly (LeV-
eque, 2006):

Even brilliant and well intentioned
computational scientists often do a poor
job of presenting their work in a repro-
ducible manner. The methods are of-
ten very vaguely defined, and even if
they are carefully defined they would
normally have to be implemented from
scratch by the reader in order to test
them. Most modern algorithms are so
complicated that there is little hope of
doing this properly . . .

On the other hand, LeVeque continues, the in-
gredients exist:

The idea of “reproducible research”
in scientific computing is to archive and
make publicly available all of the codes
used to create the figures or tables in a
paper in such a way that the reader can
download the codes and run them to re-
produce the results. The program can
then be examined to see exactly what
has been done. The development of very
high level programming languages has
made it easier to share codes and gen-
erate reproducible research. ... These
days many algorithms can be written in
languages such as MATLAB in a way
that is both easy for the reader to com-
prehend and also executable, with all
details intact.”

While the technology needed for reproducible
research exists today, mathematical scientists
don’t yet agree on exactly how to use this tech-
nology in a disciplined way. As we write this ar-
ticle there is a great deal of activity to define and
promote standards for reproducible research in
computational mathematics.
A number of publications address reproducibil-

ity and verification in computational mathemat-
ics; topics covered include: computational scale
and proof checking, probabilistic model check-
ing, verification of numerical solutions, standard
methods in uncertainty quantification, and repro-
ducibility in computational research. This is not
an exhaustive account of the literature in these

areas of course, merely a starting point for fur-
ther investigation.

In this article we review some of the available
tools that can enable reproducible research, and
conclude with a series of “best practice” recom-
mendations based on modern examples and re-
search methods.

3 Script Sharing Based on PSEs

3.1 PSEs O↵er Power and Simplicity

A key precondition for reproducible computa-
tional research is the ability for researchers to run
the code that generated results in some published
paper of interest. Traditionally this has been
problematic. Often researchers were unprepared
or unwilling to share code, and even if they did
share it the impact was minimal, as the code de-
pended on a specific computational environment
(hardware, operating system, compiler, etc.) that
others could not access. Traditionally, research
laboratory computing environments often relied
upon proprietary or hardware-specific software.

PSEs likeR, Mathematica, and MATLAB have
over the last decade dramatically simplified and
uniformized much computational science.

Each PSE o↵ers a high-level language for de-
scribing computations, often a language that is
very compatible with standard mathematical no-
tation. PSEs also o↵er graphics capabilities that
make it easy to produce often quite sophisticated
figures for inclusion in research papers. The re-
searcher is gaining extreme ease of access to fun-
damental capabilities like matrix algebra, sym-
bolic integration and optimization, and statisti-
cal model fitting; in many cases a whole research
project, involving a complex series of variations
on some basic computation, can be encoded in a
few compact command scripts.

The popularity of this approach to computing
is impressive. Figure 2 shows that the PSEs with
the most impact on research - by citations - are
the commercial closed-source packages Mathe-
matica and MATLAB, which revolutionized tech-
nical computing in the 80’s and 90’s. However,
these systems are no longer rapidly growing in
impact; while the recent growth in popularity of
R and Python is dramatic.



4

R Software

Year

Se
ar

ch
 C

ou
nt

2004 2007 2010 2013

0
80

00
MATLAB

Year

Se
ar

ch
 C

ou
nt

2004 2007 2010 2013

0
20

50
00

Python

Year

Se
ar

ch
 C

ou
nt

2004 2007 2010 2013

0
28

00
0

Mathematica

Year

Se
ar

ch
 C

ou
nt

2004 2007 2010 2013

0
24

00
0

Figure 2: The total number of hits in Google Scholar for each of the four search terms: “R Software,” MATLAB,

Python, and Mathematica. The search was carried out for each year in the decade 2004–2013. Note that the

y-axes are on di↵erent scales to show the increase or decrease in software use over time. R and Python are open

source, whereas MATLAB and Mathematica are not.

3.2 PSEs Facilitate Reproducibility

As Leveque pointed out in the quote above, a
side e↵ect of the power and compactness of cod-
ing in PSEs is that reproducible research becomes
particularly straightforward, as the original re-
searcher can supply some simple command scripts
to interested researchers, who then can rerun the
experiment or variations of it privately in their
own local instances of the relevant PSE.
In some fields authors of research papers are al-

ready heavily committed to a standard of repro-
ducing results in published papers by sharing PSE
scripts. In statistics, research papers often seek
to introduce new tools that scientists can apply to
their data. Many authors would like to increase
the visibility and impact of such methodological
papers, and are persuaded that a good way to do
this is to make it as easy as possible for users to
try the newly-proposed tools. Traditional theo-

retical statistics journal papers might be able to
expect citations in the single or low double dig-
its; there are numerous recent examples of arti-
cles which were supplemented by easy access to
code and that obtained hundreds of readers and
citations. It became very standard for authors in
statistics to o↵er access to code using packages
in one specific PSE, R. To build such a pack-
age, authors document their work in a standard
LATEX format, and bundle up the R code and doc-
umentation in a defined package structure. They
post their package at CRAN, the Comprehen-
sive R Archive Network. All R users can ac-
cess the code from within R by simple invoca-
tions require("package name") which direct R
to locate, download, and install the package from
CRAN. This process only takes seconds. Conse-
quently, all that a user needs to know today to
begin applying a new methodology is the name



5

of the package. CRAN o↵ered 5519 packages as
of May 8, 2014. A side e↵ect of authors making
their methodology available in order to attract
readers, is of course that results in their original
articles may become easily reproducible.1

3.3 Notebooks for Sharing Results

A notebook interface to a PSE stores computer
instructions alongside accompanying narrative,
which can include mathematical expressions, and
allows the user to execute the code and store the
output, including figures, all in one document.
Because all the steps leading to the results are
saved in a single file, notebooks can be shared
online, which provides a way to communicate re-
producible computational results.
The IPython Notebook, illustrated in figure 3,

provides an interface to backend computations,
for example in Python or R, that displays code
and output, including figures, with mathematical
notation typeset in LATEX. An IPython Notebook
permits the researcher to track and document the
computational steps that generate results, and
can be shared with others online using nbviewer;
see for example http://nbviewer.ipython.

org/url/jakevdp.github.com/downloads/

notebooks/XKCD_plots.ipynb).

4 Open Source Software: A Key
Enabler

PSEs and notebook interfaces are having a very
substantial e↵ect in promoting reproducibility,
but they have their limits. They make many
research computations convenient and easy to
share with others, but ambitious computations
often demand more capability than they can of-
fer. Historically, this would have meant that am-

1In fields like statistics, code alone is not su�cient
to reproduce published results. Computations are per-
formed on datasets from specific scientific projects; the
data may result from experiments, surveys or costly mea-
surements. Increasingly data repositories are being used
by researchers to share such data across the internet.
Since 2010, arXiv has partnered with the Data Conser-
vancy to facilitate external hosting of data associated
with publications uploaded to arXiv. See for example
http://arxiv.org/abs/1110.3649v1, where the data files
are accessible from the paper’s arXiv page. Such prac-
tices are not yet widespread but they are occurring with
increasing frequency.

Figure 3: Snapshot of the IPython Interactive Note-

book.

bitious projects have to be idiosyncratically coded
and di�cult to export to new computing environ-
ments.

The open source revolution has largely changed
this. Today, it is often possible to develop all of
an ambitious computational project using code
that is freely available to others. Moreover, this
code can be hosted on an open source operating
system (Linux) and run within a standard virtual
machine that hides hardware details. The open
source ‘spirit’ also makes researchers more open
to sharing code; attribution-only open source li-
censes may also allow them to do this while re-
taining some assurance that the shared code will
not be misappropriated.

Several broad classes of software are now being
shared in ways that we describe in this section.
These various classes of software are becoming
or have already become part of the standard ap-
proaches to reproducible research.

4.1 Fundamental Algorithms and
Packages

In Tables 1–10 we consider some of the fundamen-
tal problems that underly modern computational
mathematics, such as fast Fourier trans-

forms [II.FFT], linear equations [IV.NLA],
and nonlinear optimization [IV.opt], and

http://nbviewer.ipython.org/url/jakevdp.github.com/downloads/notebooks/XKCD_plots.ipynb
http://nbviewer.ipython.org/url/jakevdp.github.com/downloads/notebooks/XKCD_plots.ipynb
http://nbviewer.ipython.org/url/jakevdp.github.com/downloads/notebooks/XKCD_plots.ipynb
http://arxiv.org/abs/1110.3649v1


6

give examples of some of the many families of
open-source codes that have become available for
enabling high-quality mathematical computation.
The tables include their inception date, their cur-
rent release number, and the total number of ci-
tations these packages have garnered since incep-
tion.2 The di↵erent packages within one table
may o↵er very di↵erent approaches to the same
underlying problem. As the reader can see, a
staggering amount of basic functionality is being
developed worldwide by many teams and authors
in particular subdomains - and made available for
broad use. The citation figures in the tables tes-
tify to the significant impact these enablers are
having on published research.

Table 1: Dense linear algebra

Package Date Release Cites
LAPACK 1992 3.4.2 7600
JAMA 1998 1.0.3 129
IT++ 2006 4.2 14
Armadillo 2010 3.900.7 105
EJML 2010 0.23 22
Elemental 2010 0.81 51

Table 2: Sparse-direct solvers

Package Date Release Cites
SuperLU 1997 4.3 317
MUMPS 1999 4.10.0 2029
Amesos 2004 11.4 104
PaStiX 2006 5.2.1 114
Clique 2010 0.81 12

4.2 Specialized Systems

The packages tabulated in the last subsection are
broadly useful in computational mathematics; it
is perhaps not surprising that developers would

2Data for citation counts collected via Google Scholar
in August 2013. Note that widely used packages such as
LAPACK, FFTW, ARPACK and Suitesparse are used in
other software (e.g., MATLAB), which do not generate
citations directly.

Table 3: Krylov-subspace eigensolvers

Package Date Release Cites
ARPACK 1998 3.1.3 2624
SLEPc 2002 3.4.1 293
Anasazi 2004 11.4 2422
PRIMME 2006 1.1 61

Table 4: Fourier-like transforms

Package Date Release Cites
FFTW 1997 3.3.3 1478
P3DFFT 2007 2.6.1 14
DIGPUFFT 2011 2.4 17
DistButterfly 2013 27
PNFFT 2013 215

Table 5: Fast multipole methods

Package Date Release Cites
KIFMM3d 2003 1780
Puma-EM 2007 0.5.7 32
PetFMM 2009 29
GemsFMM 2010 16
ExaFMM 2011 28

arise to create such broadly-useful tools. We have
been surprised to see the rise of systems which
attack very specific problem areas and o↵er ex-
tremely powerful environments to formulate and
solve problems in those narrow domains. We give
three examples.

4.2.1 Hyperbolic partial di↵erential
equations

Clawpack is an open-source software package de-
signed to compute numerical solutions to hyper-
bolic partial di↵erential equations (PDEs) using
a wave propagation approach. According to sys-
tem’s lead author, Randall J. LeVeque, “[t]he de-
velopment and use of the Clawpack software im-
plementing [high-resolution finite volume meth-
ods for solving hyperbolic PDEs] serves as a case
study for a more general discussion of mathe-



7

matical aspects of software development and the
need for more reproducibility in computational
research.”

The package has been used in creating repro-
ducible mathematical research. For example the
figures for LeVeque’s book, Finite Volume Meth-
ods for Hyperbolic Problems, were generated using
Clawpack; instructions are provided for recreat-
ing those figures.

Clawpack is now a framework o↵ering numer-
ous extensions including PyClaw, with a Python
interface to a number of advanced capabilities,
and GeoClaw, developed for tsunami modeling
[V.xy] and modeling of other geophysical flows.
Apparently, the open source software practices
enabled not only reproducibility but also code ex-
tension and expansion into new areas.

Table 6: PDE Frameworks

Package Date Release Cites
PETSc 1997 3.4 2695
Cactus 1998 4.2.0 669
deal.II 1999 8.0 576
Clawpack 2001 4.6.3 131
Hypre 2001 2.9.0 384
libMesh 2003 0.9.2.1 260
Trilinos 2003 11.4 3483
Feel++ 2005 0.93.0 405
Lis 2005 1.4.11 29

Table 7: Finite element analysis

Package Date Release Cites
Code Aster 11.4.03 48
CalculiX 1998 2.6 69
deal.II 1999 8.0 576
DUNE 2002 2.3 325
Elmer 2005 6.2 97
FEniCS Project 2009 1.2.0 418
FEBio 2010 1.6.0 32

Table 8: Optimization

Package Date Release Cites
MINUIT/MINUIT2 2001 94.1 2336
CUTEr 2002 r152 1368
IPOPT 2002 3.11.2 1517
CONDOR 2005 1.11 1019
OpenOpt 2007 0.50.0 24
ADMB 2009 11.1 175

Table 9: Graph partitioning

Package Date Release Cites
Scotch 1992 6.0.0 435
ParMeTIS 1997 4.0.3 4349
kMeTIS 1998 1.5.3 3449
Zoltan-HG 2008 r362 125
KaHIP 2011 0.52 71

Table 10: Adaptive mesh refinement

Package Date Release Cites
AMRClaw 1994 4.6.3 4800
PARAMESH 1999 4.1 409
SAMRAI 1998 185
Carpet 2001 4 579
BoxLib 2000 155
Chombo 2000 3.1 198
AMROC 2003 1.1 342
p4est 2007 0.3.4.1 227

4.2.2 Parabolic and Elliptic PDEs:
DUNE

The Distributed and Unified Numerics Environ-
ment (DUNE) is an open-source modular soft-
ware toolbox for solving PDEs using grid-based
methods. It was developed by Mario Ohlberger
and other contributors and supports the imple-
mentation of methods such as finite elements, fi-
nite volumes, finite di↵erences, and discontinuous
Galerkin methods.

DUNE was envisioned to permit the integrated
use of both legacy and new libraries. The soft-



8

ware uses modern C++ programming techniques
to enable very di↵erent implementations of the
same concepts (i.e. grids, solvers, linear algebra,
etc.) using a common interface with low over-
head, meaning that DUNE prioritizes e�ciency
in scientific computations and supports high-
performance computing applications. DUNE has
a variety of downloadable modules including vari-
ous grid implementations, linear algebra, quadra-
ture formulas, shape functions, and discretization
modules.
DUNE is based on the following main princi-

ples: the separation of data structures and algo-
rithms by abstract interfaces; the e�cient imple-
mentation of these interfaces using generic pro-
gramming techniques; and reuse of existing finite
element packages with a large body of function-
ality. The finite element codes UG, ALBERTA,
and ALUGrid have been adapted to the DUNE
framework, showing the value of open source de-
velopment not only for reproducibility but for ac-
celeration of discovery through code reuse.3

4.2.3 Computer-Aided Theorem Proving

Computer-aided theorem proving [VII.xy]

has been making extremely impressive strides
in the last decade. This rests ultimately on
the underlying computational tools which are
openly available and which a whole community
of researchers is contributing to and using. In-
deed, one can only have justified belief in a
computationally-enabled proof with transparent
access to the underlying technology and broad
discussion.
There are broadly speaking two approaches

to computer-aided theorem proving tools in ex-
perimental mathematics. The first type encom-
passes machine-human collaborative proof assis-
tants and interactive theorem proving systems to
verify mathematics and computation, while the
second type includes automatic proof checking
which occurs when the machine verifies previously
completed human proofs or conjectures.
Interactive theorem proving systems include

coq, Mizar, HOL4, HOL Light, Isabelle, LEGO,
ACL2, Veritas, NuPRL, and PVS. Such systems
have been used to verify the Four Color Theorem

3See also FEniCS http://fenicsproject.org for an-
other example of an open source finite element package.

Figure 4: Example of the Kepler interface, showing a

workflow solving the classic Lotka-Volterra predator

prey dynamics model.

and to reprove important classical mathematical
results. Thomas Hales’ Flyspeck project is cur-
rently producing a formal proof of the Kepler con-
jecture, using HOL Light and Isabelle. The soft-
ware produces machine-readable code that can be
re-used and repurposed into other proof e↵orts.
Examples of open-source software for automatic
theorem proving include E and Prover9/Mace 4.

5 Scientific Workflows

Highly ambitious computations today often go
beyond single algorithms to combine di↵erent
pieces of software in complex pipelines. More-
over, modern research often considers a whole
pipeline as a single object of study and makes
experiments varying the pipeline itself. Experi-
ments involving many moving parts that must be
combined to produce a complete result are often
called workflows.

Kepler is an open source project structured
around scientific workflows – “an executable rep-
resentation of the steps required to generate re-
sults,” or the capture of experimental details that
permit others to reproduce computational find-
ings.

Kepler provides a graphical interface that al-

http://fenicsproject.org


9

lows users to create and share these workflows.
An example of a Kepler workflow is given in Fig-
ure 4, solving a model of two coupled di↵eren-
tial equations, and plotting the output. Kepler
maintains a Component Repository where work-
flows can be uploaded, downloaded, searched and
shared with the community or designated users,
and it contains a searchable library with more
than 350 processing components. Kepler operates
on data stored in a variety of formats, locally and
over the internet, and can merge software from
di↵erent sources such as R scripts and compiled
C code by linking in their inputs and outputs to
perform the desired overall task.

6 Dissemination Platforms

Dissemination platforms are websites that serve
specialized content to interested visitors. They
o↵er an interesting method to facilitate repro-
ducibility; we describe here the platforms Image
Processing OnLine (IPOL) project and Research-
Compendia.org.
IPOL is an open source journal infrastructure

developed in Python that publishes relevant im-
age processing and image analysis algorithms.
The journal peer reviews article contributions, in-
cluding code, and publishes accepted papers in a
standardized format that includes:

1. a manuscript containing the detailed descrip-
tion of the algorithm, its bibliography, and
documented examples;

2. a downloadable software implementation of
the algorithm;

3. an online demo, where the algorithm can be
tested on data sets, for example images, up-
loaded by the users;

4. an archive containing a history of the online
experiments.

Figure 5 displays these components, for a sample
IPOL publication.
ResearchCompendia, which one of the authors

is developing, is an open source platform designed
to link the published article with the code and
data that generated the results. The idea is based
on the notion of a “research compendium” – a

bundle including the article and the code and
data needed to recreate the findings. For a pub-
lished paper, a webpage is created that links to
the article and provides access to code and data
as well as meta-data, descriptions and documen-
tation, and code and data citation suggestions.
Figure 6 shows an example compendium page.

ResearchCompendia assigns a Digital Object
Identifier (DOI) to all citable objects: code,
data, compendium page, in such a way to en-
able bi-directional linking between related dig-
ital scholarly objects, such as the publication
and the data and code that generated its results
(see http://www.stm-assoc.org/2012_06_14_

STM_DataCite_Joint_Statement.pdf). DOIs
are established and widely used unique persis-
tent identifiers for digital scholarly objects. There
are other PSE-independent methods of shar-
ing such as GitHub.com (which can now assign
DOIs to code https://guides.github.com/

activities/citable-code) and supplementary
materials on journal websites. A DOI is a�xed
to a certain version of software or data that gen-
erates a certain set of results. For this reason
among others, version control [VIII.VC §2]

for scientific codes and data is important for re-
producibility.4

7 Best practices for reproducible
computational mathematics

Best practices for communicating computational
mathematics have not yet become standard-
ized. The workshop “Reproducibility in Compu-
tational and Experimental Mathematics”, held at
the Institute for Computational and Experimen-
tal Research in Mathematics (ICERM) at Brown
University in 2012, recommended the following
for every paper in computational mathematics.

• A precise statement of assertions made in the
paper.

• A statement of the computational approach,
and why it constitutes a rigorous test of the
hypothesized assertions.

4Other reasons include: good coding practices enabling
re-use; assigning explicit credit for bug fixing and code
extensions or applications; e�ciency in code organization
and development; and the ability to join collaborative cod-
ing communities such as GitHub.com.

http://www.stm-assoc.org/2012_06_14_STM_DataCite_Joint_Statement.pdf
http://www.stm-assoc.org/2012_06_14_STM_DataCite_Joint_Statement.pdf
https://guides.github.com/activities/citable-code
https://guides.github.com/activities/citable-code


10

Figure 5: An example IPOL publication. The three panels from left to right include the manuscript, the

cloud-executable demo, and the archive of all previous executions.

Figure 6: An example compendium page on Re-

searchCompendia.org. The page links to a published

article and provides access to the code and data that

generated the published results.

• Complete statements of, or references to, ev-
ery algorithm employed.

• Salient details of auxiliary software (both re-
search and commercial software) used in the
computation.

• Salient details of the test environment, in-

cluding hardware, system software and the
number of processors utilized.

• Salient details of data reduction and statis-
tical analysis methods.

• Discussion of the adequacy of parameters
such as precision level and grid resolution.

• Full statement (or at least a valid summary)
of experimental results.

• Verification and validation tests performed
by the author(s).

• Availability of computer code, input data
and output data, with some reasonable level
of documentation.

• Curation: where are code and data avail-
able? With what expected persistence and
longevity? Is there a site for future updates,
e.g. a version control repository of the code
base?

• Instructions for repeating computational ex-
periments described in the paper.

• Terms of use and licensing. Ideally code and
data “default to open,” i.e. a permissive re-
use license, if nothing opposes it.



11

• Avenues of exploration examined throughout
development, including information about
negative findings.

• Proper citation of all code and data used,
including that generated by the authors.

These guidelines can, and should, be adapted
to di↵erent research contexts but the goal is
to provide readers with the information (such
as meta-data including parameter settings and
workflow documentation), data, and code, they
require to independently verify computational
findings.

8 The Outlook

The recommendations of the ICERM workshop
listed in the previous section are the least we
would hope for today. They commendably pro-
pose that authors give enough information so that
readers can understand at some high level what
was done.
They do not actually require sharing of all

code and data in a form that allows precise re-
execution and reproduction of results. Hence,
these recommendations are very far from where
we hope to be in twenty years.
One can envision a day when every published

research document will be truly reproducible in
a deep sense, where others can repeat published
computations utterly mechanically. The reader of
such a reproducible research article would be able
to deeply study any specific figure: for example,
viewing the source code and data which under-
lie the figure, recreating the original figure from
scratch, examining input parameters that define
this particular figure and even changing their set-
tings, to study the e↵ect on the resulting figure.
Reproducibility at this ambitious level would

enable more than just individual understanding
– it would enable meta-research. Consider the
“dream applications” mentioned in Gavish and
Donoho (2012), where robots automatically crawl
through, reproduce and vary research results. Re-
producible work can be automatically extended
and generalized: it can be optimized, di↵eren-
tiated, extrapolated and interpolated. A repro-
ducible data analysis can be statistically boot-

strapped to automatically place confidence state-
ments on the whole analysis.

Coming back to earth, what is likely to hap-
pen in the near future? We confidently project
increasing computational transparency and in-
creasing computational reproducibility in coming
years. We suppose that PSEs will continue to be
very popular, and authors will increasingly share
their scripts and data, if only to attract read-
ership. Specialized platforms like Clawpack and
Dune will come to be seen as standard platforms
for whole research communities who will natu-
rally then be able to reproduce work in those ar-
eas. We expect that as the use of cloud comput-
ing grows and workflows become more complex,
researchers will increasingly document and share
the workflows that produce their most ambitious
results. We expect that code will be developed
on common platforms and will be stored in the
cloud, enabling the code to run for many years
after publication.

We expect that over the next two decades such
practices will become standard, and will be based
on tools of the kind discussed in this article. The
direction of increasing transparency and increas-
ing sharing seem clear, but it’s still unclear which
combinations of tools and approaches will come
to be standard.

Further Reading

1. Hales, T., 2013 Mathematics in the Age of the
Turing Machine. http://arxiv.org/abs/1302.
2898. To appear in Turing’s Legacy, ASL Lec-
ture Notes in Logic, editor Rodney G. Downey.

2. LeVeque, R., 2006 Wave propagation soft-
ware, computational science, and reproducible
research. Proceedings of the International
Congress of Mathematicians Madrid, August 22-
30: invited lectures.

3. Bailey, D. H., Borwein, J., and Stodden, V. 2013
Set the Default to ‘Open’ Notices of the AMS
June/July, 679–680.

4. AMS Workshop 2011 Reproducible Research:
Tools and Strategies for Scientific Computing.
July 13-16. http://stodden.net/AMP2011

5. Donoho, D., Maleki, A., Shahram, M., Ur Rah-
man, I., and Stodden, V. 2009 Reproducible
Research in Computational Harmonic Analysis.
IEEE Computing in Science and Engineering 11
(1), 8–18.

6. Stodden, V. 2009 The Legal Framework for Re-
producible Scientific Research: Licensing and

http://arxiv.org/abs/1302.2898
http://arxiv.org/abs/1302.2898
http://stodden.net/AMP2011


12

Copyright. Computing in Science and Engineer-
ing 11 (1), 35–40.

7. Stodden, V. 2009 Enabling Reproducible Re-
search: Licensing for Scientific Innovation. In-
ternational Journal of Communications Law and
Policy 13, 1–25.

8. Stodden, V., Guo, P., and Ma, Z. 2013 Toward
Reproducible Computational Research: An Em-
pirical Analysis of Data and Code Policy Adop-
tion by Journals. PLoS ONE 8 (6).

9. Gentleman, R., and Temple Lang, D. 2007 Sta-
tistical analyses and reproducible research Jour-
nal of Computational and Graphical Statistics
16, 1–23.

10. Buckheit, J., and Donoho, D. 1995 Wavelab and
reproducible research. In: Antoniadis A, edi-
tor. Wavelets and Statistics. New York, NY:
Springer, 55–81.

11. Gavish. M., and Donoho, D. 2012 Three Dream
Applications of Verifiable Computational Re-
sults. Computing in Science and Engineering
14(4), 26–31


	Introduction
	Reproducible Research
	Script Sharing Based on PSEs
	PSEs Offer Power and Simplicity
	PSEs Facilitate Reproducibility
	Notebooks for Sharing Results

	Open Source Software: A Key Enabler
	Fundamental Algorithms and Packages
	Specialized Systems

	Scientific Workflows
	Dissemination Platforms
	Best practices for reproducible computational mathematics
	The Outlook

