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Abstract— The classical multivariate linear regression prob-
lem assumes p variables X1, X2, . . . , Xp and a response vector
y, each with n observations, and a linear relationship between
the two: y = Xβ + z, where z ∼ N(0, σ2). We point out
that when p > n, there is a breakdown point for standard
model selection schemes, such that model selection only works
well below a certain critical complexity level depending on
n/p. We apply this notion to some standard model selection
algorithms (Forward Stepwise, LASSO, LARS) in the case
where p À n. We find that 1) the breakdown point is well-
defined for random X-models and low noise, 2) increasing
noise shifts the breakdown point to lower levels of sparsity,
and reduces the model recovery ability of the algorithm in a
systematic way, and 3) below breakdown, the size of coefficient
errors follows the theoretical error distribution for the classical
linear model.

I. INTRODUCTION

The classical multivariate linear regression problem pos-
tulates p variables X1, X2, . . . , Xp and a response vector y,
each with n observations, and a linear relationship between
the two: y = Xβ+z, where X is the n×p model matrix and
z ∼ N(0, σ2). The vector of coefficients, β, is estimated by
(X ′X)−1X ′y. Hence the classical model requires p ≤ n.
Developments in many fields, such as genomics, finance,
data mining, and image classification, have pushed attention
beyond the classical model, to cases where p is dramatically
larger than n.

II. ESTIMATING THE MODEL WHEN p >> n

George Box coined the term Effect Sparsity [1] to describe
a model where the vast majority of factors have zero effect
– only a small fraction actually affect the response. If β
is sparse, ie. containing a few nonzero elements, then y =
Xβ + z can still be modeled successfully by exploiting
sparsity, even when the problem is underdetermined in the
classical sense.

A number of strategies are commonly used to extract a
sparse model from a large number of potential predictors: all
subsets regression (fit all possible linear models for all levels
of sparsity), forward stepwise regression (greedily adds terms
to the model sequentially, by significance level), LASSO [8]
and Least Angle Regression [7] (’shrinks’ some coefficient
estimates to zero).
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A. Ideas from Sparse Representation

We mention some ideas from signal processing that will
allow us to see that, in certain situations, statistical solutions
such as LASSO or Forward Stepwise, are just as good as all
subsets regression.

When estimating a sparse noiseless model, we would
ideally like to find the sparsest solution:

minβ ||β||0 s.t. y = Xβ. (1)

This is intuitively compelling. Unfortunately it is not com-
putationally feasible since it requires an all-subsets search.
Basis Pursuit [3], was pioneered for sparse representation in
signal processing, and solves:

minβ ||β||1 s.t. y = Xβ; (2)

this is a convex optimization problem. Surprisingly, under
certain circumstances the solution to (2) is also the solution
to (1) [4]. More precisely, there is a threshold phenomenon or
breakdown point such that, provided the sparsest solution is
sufficiently sparse, the `1 minimizer is precisely that sparsest
solution.

The LASSO model selection algorithm solves:

minβ ||y −Xβ||22 s.t. ||β||1 ≤ t (3)

for a choice of t. (The Least Angle Regression (LARS)
algorithm provides a stepwise approximation to LASSO.)
For an appropriate choice of t, problem (3) describes the
same problem as equation (2). This suggests a course of
investigation: we may be able to cross-apply the equivalence
of equations (1) and (2) to the statistical model selection
setting. Perhaps we can observe a threshold in behavior such
that for sufficiently sparse models, traditional model selection
works, while for more complex models the algorithm’s
ability to recover the underlying model breaks down.

B. The Phase Transition Diagram

In the context of `0/`1 equivalence, Donoho [4] introduced
the notion of a Phase Diagram to illustrate how sparsity and
indeterminacy affect success of `1 optimization. One displays
a performance measure of the solution as a function of the
level of underdeterminedness n/p and sparsity level k/n,
often with very interesting outcomes.

Figure 1 has been adapted from [4]. Each point on the
plot corresponds to a statistical model for certain values of
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Fig. 1. The theoretical threshold at which the l1 approximation to the
l0 optimization problem no longer holds. The curve delineates a Phase
Transition from the lower region where the approximation holds, to the
upper region, where we are forced to use combinatorial search to recover
the optimal sparse model. Along the x-axis the level of underdeterminedness
decreases, and along the y-axis the level of sparsity of the underlying model
increases.

n, p, and k. The abscissa runs from zero to one, and gives
values for δ = n

p . The ordinate is ρ = k
n , measuring the level

of sparsity in the model. Above the plotted phase transition
curve, the `1 method fails to find the sparsest solution; below
the curve the solution of (2) is precisely the solution of (1).

Inspired by this approach, we have studied several statis-
tical model selection algorithms by the following recipe:

1) Generate underlying model, y = Xβ + z where β is
sparse i.e. has k < p nonzeros.

2) Run a model selection algorithm, obtaining β̂,
3) Evaluate performance: ||β̂−β||2

||β||2 ≤ γ.
Averaging the results over numerous realizations, we get a

picture of the performance of model selection as a function of
the given sparsity and indeterminacy. In this note we present
phase diagrams for LASSO, LARS, Forward Stepwise, and
Forward Stepwise with False Discovery Rate threshold.

III. MAIN RESULTS

A. Phase Diagrams

For our experiments we specified the underlying model to
be y = Xβ + z where z ∼ N(0, 16), β is zero except for k
entries drawn from unif(0, 100), and each Xij ∼ N(0, 1)
with columns normalized to unit length.

We display the median of the normalized l2 errors for 30
estimated models for each (underdeterminedness, sparsity)
combination, p = 200 fixed.

Forward Stepwise enters variables into the model in a
sequential fashion, according to greatest t-statistic value [9].
A

√
2 log(p) threshold, or Bonferroni threshold, will admit

terms provided the absolute value of their t-statistic is not
less than

√
2 log(p), about 3.25 when p = 200. Using

Forward Stepwise with a False Discovery Rate threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ = n / p

ρ 
=

 k
 / 

n

LASSO Normalized L
2
 error; Noisy Model z~N(0,16)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Phase transition diagram when the sparse model is recovered using
the LASSO Algorithm [8], where the number of variables, p, is fixed at 200.
The theoretical phase transition curve from Fig 1 has been superimposed.
The dark blue area, below the curve, indicates where the algorithm recovered
the underlying model with near zero error, but above the curve in the colored
area, the algorithm was unable to recover the correct model. As you proceed
further above the curve, the ability of the algorithm to recover the model
progressively drops. As with the theoretical phase transition diagram in Fig
1, along the x-axis the level of underdeterminedness decreases, and along
the y-axis the level of sparsity of the underlying model increases. Each color
indicates a different median normalized l2 error of the coefficients ||β̂−β||2

||β||2
over 30 realizations.
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Fig. 3. This diagram displays the median error rates when the LARS
Algorithm [7] is used to recover the underlying sparse model, with the
number of variables, p, fixed at 200. The algorithm does not find the correct
model well above the threshold, and seems to have trouble when there are
as many predictors as observations. Each color indicates a different median
normalized l2 error of the coefficients ||β̂−β||2

||β||2 over 30 realizations.
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Fig. 4. Phase diagram when the underlying sparse model is recovered
using the Forward Stepwise Algorithm, with the number of variables, p,
fixed at 200. Variables were greedily added to the model until no remaining
t-statistic was greater than

p
2 log(p). The phase transition is striking here:

there is a very sharp dropoff below which the algorithm recovers the model
with near zero error, and above which the model is unrecoverable. As with
the theoretical phase transition diagram in Fig 1, along the x-axis the level
of underdeterminedness decreases, and along the y-axis the level of sparsity
of the underlying model increases. Each color indicates a different median
normalized l2 error of the coefficients ||β̂−β||2

||β||2 over 30 realizations.
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Fig. 5. This phase diagram shows the implementation of the Forward
Stepwise Algorithm, but with a False Discovery Rate threshold: a term is
added to the model if it has the largest t-statistic of all candidate terms and its
corresponding p-value is less than the FDR value, defined as (.25×(number
of terms currently in the model)/(total number of variables)). The number
of variables is fixed at 200. This version of Forward Stepwise has a Phase
Transition similar to the theoretical curve from Fig 1 (overlaid) rather than
the steep dropoff of classical Forward Stepwise. Each color indicates a
different median normalized l2 error of the coefficients ||β̂−β||2

||β||2 over 10
realizations.

allows more terms to enter the model, provided the p-value
associated with the t-statistic is less than the FDR threshold.
The FDR threshold is defined as q m

p , where q = .25 (the
FDR parameter [5]), m is the number of terms in the current
estimated model, and p is the total number of variables
available for potential inclusion.

Each of the phase diagrams shows a transition from
accurate model recovery to very inaccurate as the under-
lying complexity of the model increases. Both Stepwise
and Stepwise with FDR Threshold show a clear boundary
below which the algorithm recovers the correct model, and
above which it does not. The predicted curve from Figure
1 has been overlaid on the LASSO and Stepwise FDR
plots: interestingly, both algorithms break down in line
with the predicted curve. The behavior of LARS is very
similar to LASSO although it has trouble when p = n.
Bonferroni Forward Stepwise appears uniformly worse than
either LASSO or LARS, with a constant sparsity level
beyond which it fails dramatically, irregardless of the level
of underdeterminedness. The FDR threshold depends on the
number of terms currently in the model implying that as the
sparsity level increases so does the FDR parameter, and more
terms are included.

B. Examining a Slice

To understand what drives these phase transitions, we can
zero in by fixing δ = 1

2 , i.e. twice as many variables as
observations. If p is fixed at 200, this means we examine a
vertical slice of the phase diagram with n = 100.

For the case of Forward Stepwise with
√

2 log(p) thresh-
old we varied both p and the model noise level, z. Figures
6 and 7 show δ = 1

2 slices for p = 200 and 500, and noise
levels σ = {0, 1, 2, 4, 6, 9, 12, 16}.

The “breakdown” in the error level shows where the
algorithm stops recovering the correct underlying model.
Notice how increased model noise drives the breakdown
point lower, at sparser models. The noise level also limits the
accuracy – even when the correct model type is recovered,
the coefficients are noisily estimated, and the coefficients are
estimated with more noise when the noise in the underlying
model increases. As the number of variables increases from
p = 200 to p = 500, the breakdown point occurs earlier, i.e.
as the number of spurious predictors increases. In order to
understand the effect of model noise, we expect that when
the algorithm estimates the model with small error (before
the “breakdown”), the error will follow the oracle MSE:

tr((X ′X)−1)σ2 (4)

where X is an n × k matrix where each column is a
variable included in the final model. Suppose (contrary to the
usual case in regression modeling!) the existence of an all-
knowing oracle, in particular with knowledge of the correct
underlying model in each instance. We can compare the
performance of Forward Stepwise Selection with the oracle
model as a baseline. Figures 8 and 9 show error results for
this oracle model, under the same circumstances as Forward



Stepwise: δ = 1
2 slices for p = 200 and 500, and noise levels

σ = {0, 1, 2, 4, 6, 9, 12, 16}. For both p = 200 and p = 500
the median oracle MSE increases proportionally to the model
noise level.
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Fig. 6. This shows a single vertical slice of the Phase Diagram for Forward
Stepwise (Fig 4), with varying noise levels, with δ = n

p
fixed at .5 and the

number of variables fixed at 200. Each increase in model noise (from no
noise to N(0, 162)), causes the algorithm to break down at higher sparsity
levels. The median of the normalized l2 error for the coefficient estimates
is shown, over 1000 replications.

When the Forward Stepwise algorithm does find the cor-
rect model, we expect the errors to be distributed according to
equation (4); exhibiting similar behavior as the oracle MSE.
Figures 10 and 11 plot the ratio of the median Forward
Stepwise MSE before the breakdown point to the oracle
MSE. The breakdown point was determined to be the point at
which the first difference was maximized. The figures show
the earlier breakdown point, at sparser underlying models,
for the higher noise models. In both plots the noiseless
model gives very nearly the same zero error rate using both
algorithms, but as we add increasing levels of noise to the
model, the median MSE for Forward Stepwise increases at
a greater rate than that for the median Oracle MSE; roughly
1-2 times that of the oracle MSE. The effect of increasing
the number of spurious variables can be seen in two ways:
the Forward Stepwise MSE increases relative to the oracle
MSE (for a given noise level), and it implies a breakdown
point at lower sparsity levels.

IV. SOFTWARE AND REPRODUCIBLE RESEARCH

All the code used to create the figures appearing in this
paper is publicly available as a Matlab toolbox SparseLab
downloadable at http://sparselab.stanford.edu . The toolbox
contains scripts which reproduce all the calculations of
this paper. SparseLab is designed to provide the research
community with open source tools for sparse representation,
supplemented with detailed examples and demonstrations.
For more about reproducible research see [2], [6].
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Fig. 7. This shows vertical slices at δ = n
p

= .5 through the Forward
Stepwise Phase Diagram (Fig 4), with the number of variables now fixed at
500, and the number of replications at 300. As the noise level is increased
from σ = 0 to σ = 16 the breakdown point occurs earlier, ie. for sparser
and sparser models. Notice also that with the increase in p from 200 to
500 the breakdown point, for the same level of noise, occurs at sparser
underlying models.
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Fig. 8. Median normalized l2 error rates over 500 replications when
the true underlying model is known and estimated directly using ordinary
least squares. The number of variables is fixed at 200, and the number
of observations fixed at 100, δ = n

p
= .5. The oracle MSE is directly

proportional to the model noise, and increases sharply as the underlying
model becomes less sparse. The data are right truncated at ρ=.9 because
the OLS MSE approaches infinity as ρ approaches 1. (i.e. the number of
observations equals the number of variables)
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Fig. 9. Median normalized l2 error rates over 500 replications when
the true underlying model is known and estimated directly with ordinary
least squares. The number of variables is fixed at 500, and the number
of observations fixed at 250, δ = n

p
= .5. The oracle MSE is directly

proportional to the model noise, and increases sharply as the underlying
model becomes less sparse. As the number of variables increases from 200
(Fig 8) to 500, the error rate increases at slightly lower sparsity levels. The
data are right truncated at ρ=.9 because the OLS MSE approaches infinity
as ρ approaches 1 (i.e. the number of observations equals the number of
variables).
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Fig. 10. Ratio of median Forward Stepwise MSE to the median oracle MSE.
The number of variables is fixed at 200, the number of observations at 100,
ie. δ = n

p
= .5, and the median was taken over 1000 replications. The error

rates were truncated at the maximum first difference, to isolate the region
in which Forward Stepwise does recover the underlying model correctly.
At higher noise levels, the breakdown point occurs at lower sparsity levels,
i.e. the model must be more sparse for Forward Stepwise to recover it with
small error. The errors increase more for Forward Stepwise with increasing
noise levels, than for the oracle MSE.
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Fig. 11. Ratio of median Forward Stepwise MSE to the median oracle MSE.
The number of variables is fixed at 500, the number of observations at 250,
maintaining δ = n

p
= .5, and the median was taken over 300 replications.

The error rates were truncated at the maximum first difference, isolating
the region in which Forward Stepwise does recover the underlying model
correctly. For Forward Stepwise, the median MSE is roughly 1-2 times
that of the median oracle MSE, and at higher noise levels, the breakdown
point occurs at lower sparsity levels. The errors increase more for Forward
Stepwise with increasing noise levels, than for the oracle MSE. The change
in the number of variables from 200 to 500 causes the Forward Stepwise
MSE to increase and implies a breakdown point at lower sparsity levels.

V. CONCLUSIONS

We borrowed the idea of the phase diagram from studies
of sparse underdetermined equations and used it to document
the existence of a well-defined breakdown point for model
selection algorithms, for linear regression in the p > n case.
When the true underlying model is sufficiently sparse – less
than the breakdown point – Forward Stepwise regression,
LASSO, and LARS can find a good model. When the true
underlying model uses a number of terms close to the number
of observations, such model selection methods do not work
well. We find that the Forward Stepwise algorithm exhibits
different breakdown behavior depending on the threshold-
to-enter used: for Bonferroni (

√
2 log(p)) thresholding, the

algorithm ceased to recover the underlying model correctly
at a particular sparsity level, regardless of the level of under-
determindedness. Using the False Discover Rate threshold
gave breakdown results similar to the theoretical threshold.
Forward Stepwise with the Bonferroni threshold breaks down
earlier (at sparser models) with an increase in model noise,
and an increase in the total number of variables. Before the
breakdown point for this algorithm, the size of coefficient er-
rors follows the theoretical error distribution for the classical
linear regression model.

We introduce a Matlab toolbox for sparse representation,
SparseLab, available at http://sparselab.stanford.edu; it con-
tains the code used to create the figures in this paper.
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