
Reproducible software vs. reproducible research

Fernando Pérez
Helen Wills Neuroscience Institute,
University of California at Berkeley.

http://fperez.org
Fernando.Perez@Berkeley.edu

January 21, 2011

Note: this text should be considered a working draft and is not a complete academic article (e.g. it
currently lacks a proper set of bibliographic references). It is offered here as a complement to a talk
delivered at the 2011 annual meeting of the AAAS.

As an active member of both the scientific research and the open-source software development
communities, I have observed that the latter often lives up better than the former to our ideals of
scientific openness and reproducibility. I will explore the reasons behind this, and I will argue that
these problems are particularly acute in computational domains where they should be in fact less
prevalent. I will discuss how we can draw specific lessons from the open source community both
in terms of technical approaches and of changing the structure of incentives, to make progress
towards a more solid base for reproducible computational research.

1 A contrast in cultures

Open source software development uses public fora for most discussion and systems for sharing
code and data that are, in practice, powerful provenance tracking systems. There is a strong cul-
ture of public disclosure, tracking and fixing of bugs, and development often includes exhaustive
automatic validation systems, that are executed automatically whenever changes are made to the
software and whose output is publicly available on the internet. This helps with early detection
of problems, mitigates their recurrence, and ensures that the state and quality of the software is a
known quantity under a wide variety of situations (operating systems, inputs, parameter ranges,
etc). Additionally, the very systems that are used for sharing the code track the authorship of con-
tributions. All of this ensures that open collaboration does not dilute the merit or recognition of
any individual developer, and allows for a meritocracy of contributors to develop while enabling
highly effective collaboration.

In sharp contrast, the incentives in computational research are strongly biased towards the
rapid publication of papers without any realistic requirement of validation. The outcome is that
results from publications in computationally-based research (applied to any specific field of in-
quiry) are often, in practice, impossible to reproduce. Sometimes this is due to the code not being
available at all in the first place. Often, however, authors do make codes available –thus fulfilling
a token requirement of disclosure– but in such a state that it is not a practical solution to the re-
producibility problem. A static archive of source code that has never been tested in a computer or
operating system outside of the author’s, that has never been audited by external eyes, that has

1

http://fperez.org


no automatic testing built into it, is highly unlikely to work reliably when used in a completely
new environment.

2 The realities of transplanting approaches

Notwithstanding the above, there are real issues with simply attempting to transplant the prac-
tices of open source development verbatim to computational research. The open source model
ends up being one where, in practice, the copyright and authorship of any large collaborative
project is spread amongst many authors, possibly thousands. While the source control tools in
use do allow for a relatively precise provenance analysis to be performed if desired, this is rarely
done and its success is contingent on the community having followed certain steps rigorously to
ensure that attribution was correctly recorded during development.

This is not a major issue in open source, as the rewards mechanisms tend to be more infor-
mal and based on the overall recognition of any one contributor in the community. Sometimes
people contribute to open source projects as part of their official work responsibilities, and in that
case a company can enact whatever policies it deems necessary; often contributions are made by
volunteers for whom an acknowledgment in the project’s credits is sufficient recognition.

In contrast, the academic world overwhelmingly weighs the authorship of scholarly articles
and conference proceedings as the main driver of all forms of professional advancement and
reward. In this system, the pecking order of authorship matters enormously (with the many
unpleasant consequences familiar to all of us), and so does the total number of authors in a pub-
lication. While in certain communities papers with thousands of authors do exist (experimental
high-energy physics being the classic example), most scientists need the prominent visibility they
can achieve in a short author list. This dilution of authorship that can result from a largely open
collaborative development model is an important issue that must be addressed by any proposal
we present.

Furthermore, the notion of a fully open development model typical of open source projects
is at sharp odds with another aspect of the scientific publication and reward system: the "first to
publish" race. Most scientists would, understandably, be very leery of exposing their projects to
an openly accessible website when in their embryonic stages. The fear of being scooped by others
is very real, and again we must properly address it as we consider how to apply the lessons of
open source development to the scientific context.

3 The limits of scientific computational reproducibility

As we seek ways to learn from the ways in which the open source praxis can inform our scientific
work, we must recognize that the ideal of scientific reproducibility is by necessity a reality of
shades. We can see a gradation that goes from a pure mathematical result whose proof should
be accessible to any person skilled in the necessary specialty, to one-of-a-kind experiments such
as the Large Hadron Collider or the Hubble Space Telescope, that can’t be reproduced in any
realistic sense. At each point in this spectrum, however, we can always find ways to improve our
confidence in the results: whether we re-analyze the same unique datasets with independently
developed packages run by separate groups or we re-acquire partial samplings of critical data
multiple times, we should never completely renounce the ideals of reproducibility because of
practical difficulties.

2



Similarly, in computational research we also have certain areas where complete reproducibil-
ity is more challenging than others. Some projects require computations carried on the largest
supercomputers on the planet, and these are very expensive resources that can’t be arbitrarily
allocated for repeated executions of the same problem. Others may require access to enormous
datasets that can’t easily be transferred to the desktop of any researcher wishing to re-execute
an analysis. But again, alternatives exist: it should be possible to validate scaled versions of the
largest problems run independently, against scaled specimens created on the supercomputers for
this very purpose, and sub-sampled datasets can be used to collect at least validation statistics
that may be informative of the trust we place on the published analysis.

4 Some ideas moving forward

Ultimately, while it is true that there are real issues with applying the ideals of computational
reproducibility from open source software development to computational research, we can and
must do better. We sketch here some ideas on concrete lessons we can learn from software devel-
opment in this direction:

• Pervasive version control: research codes should be developed, while still in-house, always
using version control systems that track the actual history of everyone’s contributions.

• Journals should mandate that upon paper approval (but before actual publication and with
said publication being conditioned on the author meeting this last condition), authors must
expose their version control system to the public, and that the publicly available version
can faithfully reproduce (within the limitations discussed above) the published results. This
public version then becomes available for the scientific community not only for download,
but also as a starting point for further contribution and development.

• By using a distributed version control system, authors can continue to maintain a private
branch where new work (say leading to a new publication) is conducted while tracking the
public development. This will enable them to maintain exclusive access to their new work
until it is published, while continuing to develop the openly accessible code with the rest of
the scientific community. Once the code is published, since it was developed using the same
version control machinery of the public branch, the new contributions can be seamlessly
merged with the public version and their entire provenance (including information such as
time of invention and individual credit within the lab) becomes available for inspection.

In summary, we think that a few simple lessons can be learned from the practices of the open
source world which, if carefully assimilated, can lead to significant improvements in the state of
reproducible computational research.

3


	A contrast in cultures 
	The realities of transplanting approaches 
	The limits of scientific computational reproducibility 
	Some ideas moving forward 

