
Dissemination and Management of Computational

Science Software

Matthew G. Knepley
Computation Institute

University of Chicago, Chicago, IL
knepley@ci.uchicago.edu

1. Barriers to Sharing

Today large, sophisticated, parallel codes have been used to simulate
problems as diverse as supernovae, protein binding, earthquakes, and flu-
idized bed reactors. However, these breakthrough computational results and
packages are all but unavailable to other scientists, greatly limiting the im-
pact of these experiments.

Many codes are open source, in the sense that a user might obtain a raw
copy of the code. However, this is far from sufficient if one is to reproduce
the computation itself. Transparency must extend to the installation process,
verification tests, benchmark computations, and analysis of output. More-
over, these large codes are frequently dependent on many smaller packages.
This transparency must extend down the entire hierarchy of packages.

In the same way, the ability to repeat a given calculation is a foundational
step, but ultimately insufficient. Another user must be able to easily alter
parameters, introduce new experiments, and interact with the output. The
code must be usable by others.

In the next sections, we will attempt to describe a set of necessary tools
for sharing scientific code and reproducing computational experiments. Note
that most of the considerations here also apply to publication of computa-
tional results.

Preprint submitted to Elsevier November 9, 2009



2. Location and Retrieval

2.1. Retrieval

The most common method of disseminating source code today is to make
a tar archive of the source tree available for download on the web. This
scheme, however, has several limitations. It can be difficult to determine
exactly which archive we received. This problem is usually corrected hap-
hazardly with descriptive file names, or in a more coherent fashion using
digital signatures. An elegant solution to this problem is provided by version
control systems.

A version control system (VC) tracks changes made to files under its
management. Older systems, such as CVS and Subversion, track all changes
individually, whereas more modern systems, such as Mercurial and Git allow
sets of changes to be grouped together. Thus, using version control, a user is
freed from the dependence on a particular release, and can choose to obtain
a snapshot of the software at any point in its development. The structure of
releases is recovered by labeling particular changes with release information.

VC also gracefully handles the related problem of inevitable bug fixes and
updates, usually refered to as change management. Entirely new archives are
expensive to download, and patches are a cumbersome, error prone mecha-
nism. VC allows the user to seamlessly retrieve updates, and some systems
such as Git or Mercurial Patch Queues, allow them to select only the updates
they want. Maintaining several versions or reverting to a previous version,
quite difficult with different tarballs, can be easily done as well.

Finally, with the introduction of VC, the situation for potential contrib-
utors changes dramatically. Instead of submitting a diff, or text description
of the changes made to some version of the code, the VC system can send
a structured description not only of the changes, but the base version which
was changed. Since the introduction of Git, contributions to the Linux ker-
nel have drastically jumped [1]. Moreover, distributed VC systems such as
Mercurial and Git give the user a full record of past changes to explore, and
allow users to exchange updates directly, without the intervention of a central
server.

2.2. Location

A user must also locate the package he is searching for. There are several
excellent free hosting services, including SourceForge, BitBucket, Google-
Code, and GitHub. These websites provide not only VC, but also issue

2

http://www.nongnu.org/cvs
http://subversion.tigris.org
http://mercurial.selenic.com
http://git-scm.com
http://sourceforge.net
http://bitbucket.org
http://code.google.com/projecthosting
http://code.google.com/projecthosting
http://github.com


tracking, source code browsing, and a Wiki for user interaction. Inexplicably,
however, these sites omit one of the most important resources for scientific
software, namely published papers.

The arXiv preprint server [2], operated by Cornell University, is the free
source for papers on scientific computing. However, it does not currently
support submission of associated source code. The arXiv does incorporate
version control, however it does not leverage any existing package, and omits
many features necessary for source code [3]. In addition, this software does
not appear to be open, an ironic situation for one of the largest open archives
of scientific papers. It seems clear that a merger of the functionality from
the arXiv and a hosting site above would result in significant benefit for the
computational science community.

3. Configuration, Build, and Run Management

3.1. Configuration and Build

The original aim of a configuration process was to preserve the portability
of a piece of software. Tests would be performed to determine, for instance:

• which version control systems are available

• which languages have compilers or interpreters available

• which compilers should be used

• which compiler flags should be used

• what capabilities the compilers possess

• whether a data type is defined

• whether a header file is present

• whether a library is present

• whether a function is present in a library

• whether a executable file is present

3

http://arXiv.org


This information is used to customize the build by generating headers, and
makefiles or build scripts. This was the original motivation for the very
popular GNU autoconf program, and is sufficient for the development of
UNIX tools for which it was created.

As scientific software has evolved to solve much more complicated prob-
lems using advanced numerical methods, packages have evolved from self-
contained libraries, such as BLAS/LAPACK, to frameworks which are built
upon many lower level libraries, such as PETSc [4] which has interfaces to
more than 60 packages [5]. Autoconf was not designed to handle a hierarchy
of packages, and this rapidly becomes unmanageable. For PETSc, we have
written a replacement in Python, BuildSystem, which is explicitly designed
to interact with subsidiary packages. In fact, most packages to which PETSc
interfaces can be automatically downloaded and built by the configure sys-
tem. This style of package management is another implementation of the
Gentoo Linux Portage philosophy.

In the experience of the author, the problem of subpackage management
is a severe obstacle to sharing large scientific codes. Most codes do not
possess a sophisticated configuration system, and are built on a small number
of systems through great effort by the dedicated developers. Adoption of
modern configuration tools is absolutely crucial to widespread dissemination
of the large scale, complex frameworks on which modern simulations will
depend.

Once the configuration process has customized build information for the
target architecture, operating system, external package selection, compiler
suite, and optimization level, the build process itself is quite straightforward.
GNU make is by far the most popular software for build management, but
recently competitors such as SCons and Jam have arisen which provide su-
perior functionality at the cost of increased complexity.

3.2. Testing

Once installed, it is imperative to check the package operation, even cur-
sorily. Construction of an executable can reveal unresolved symbols which
would not cause a build error when using shared libraries. Also when us-
ing shared libraries, it can reveal mismatches between relocatable (produced
with -fPIC) and non-relocatable libraries, the source of many errors on 64-
bit platforms. For more sophisticated unit testing, we recommend using a
framework, such as cppUnit. Unit tests are small pieces of code, having well
defined output, which test a single capability of the program. These allow

4

http://www.gnu.org/software/autoconf
http://www.netlib.org
http://www.mcs.anl/gov/petsc
http://petsc.cs.iit.edu/petsc/BuildSystem
http://www.gentoo.org/doc/en/handbook/handbook-x86.xml?part=2\&chap=1
http://www.gnu.org/software/make
http://www.scons.org
http://www.perforce.com/jam/jam.html
http://sourceforge.net/projects/cppunit


the user to verify that installation has proceeded correctly and the code is
producing correct results. A neglected part of unit testing, especially impor-
tant for scientific codes, is performance tests. These can be validated against
models of the performance parametrized by easily measured machine charac-
teristics. This kind of modeling and testing is crucial for obtaining efficiency
across a range of architectures. Finally, regression tests can be useful for
longer term users to verify the installation after updates. Regression tests
are larger pieces of code, testing multiple functionalities at once. The test
checks for changes in the result, rather than an analytically known answer.
Excellent free systems for this are available, such as buildbot.

3.3. Run verification and code assessment

Once a package has been successfully installed and tested, the user can at-
tempt to replicate computational experiments. Each package will inevitably
have some idiosyncratic input. However, some tools have been developed
which attempt to organize input, output, and analysis, and create common
patterns and infrastructure for code use. These will be crucial if we are
to progress from mere repeatibility of computational experiments, to usua-
bility of packages, allowing others to push experiments beyond the original
conceptions.

The Pyre framework from Caltech has developed a general system to
encode input data using Python. A particularly useful feature of this new
system is the flexible expression of units. All units are expressed as a tuple
of the basic SI units, which is transparent to the users. Particular units are
defined as static tuples in Python and all conversion can take place automat-
ically. Pyre also provides a uniform interface for launching jobs on diverse
architectures with different run management policies. This can be invaluable
when trying to reproduce a large run made on an unfamiliar batch queueing
system. This system is in use for a DOE ASCI project at Caltech.

Once an experiment, or benchmark, is executed, users must be able to
interpret the result. Often these checks are quite simplistic, such as checking
that a field is reproduced to a norm-wise tolerance, or that a residual norm
is sufficiently small. However, more structured output and tests allow richer
forms of interaction by the user.

A widespread method for comparing and understanding solution output
is to visualize the result. Common formats, such as VTK, are now widely
supported and complex visualizations can be easily constructed using free
platforms, such as Mayavi2 and Paraview. However, visualization formats

5

http://buildbot.net
http://pyre.caltech.edu
http://www.vtk.org
http://code.enthought.com/projects/mayavi/
http://www.paraview.org


like VTK discard much of the structure in the solution, and complicate fur-
ther analysis. More advanced, but also more narrow, formats such as CGNS
and ExodusII carry explicit information about the discretization method and
physics of the problem. This information can be used to analyze the solu-
tion in ways unavailable to traditional visualization tools. The Cigma [6]
tool from Caltech allows comparison of finite element solutions from differ-
ent meshes and elements by explicitly projecting each to a canonical mesh
and then evaluating error norms and visualizing differences using VTK. This
kind of tool allows the user to connect directly with the FEM theory when
evaluating a solution, rather than merely a picture.

4. Outlook

In order to fully realize the benefits of open code frameworks and re-
producible computational experiments, the tools highlighted above must be
combined into a single workflow. Usability is the key requirement for com-
munity adoption. It would seem natural to try and layer this functionality
on top of existing systems. For instance, the arXiv is a natural candidate.
We should also consider existing packaging systems, such as Apt and Yum.
However, most important for success is a community commitment, from both
developers and users, to hold computational experiments to the same high
standard as those done in any laboratory.

References

[1] G. K. Hartman, The linux kernel (2009).
URL http://www.youtube.com/watch?v=L2SED6sewRw

[2] P. Ginsparg, Creating a global knowledge network, second Joint ICSU
Press–UNESCO Expert Conference on Electronic Publishing in Science
(February 2001).
URL http://people.ccmr.cornell.edu/~ginsparg/blurb/

pg01unesco.html

[3] R. E. Luce, E-prints intersect the digital library: Inside the los alamos
arxiv, Issues in Science and Technology Librarianship (29).
URL http://www.library.ucsb.edu/istl/01-winter/article3.

html

6

http://cgns.sourceforge.net
http://sourceforge.net/projects/exodusii
http://www.geodynamics.org/cig/software/packages/cs/cigma
http://wiki.debian.org/Apt
http://yum.baseurl.org
http://www.youtube.com/watch?v=L2SED6sewRw
http://www.youtube.com/watch?v=L2SED6sewRw
http://people.ccmr.cornell.edu/~ginsparg/blurb/pg01unesco.html
http://people.ccmr.cornell.edu/~ginsparg/blurb/pg01unesco.html
http://people.ccmr.cornell.edu/~ginsparg/blurb/pg01unesco.html
http://www.library.ucsb.edu/istl/01-winter/article3.html
http://www.library.ucsb.edu/istl/01-winter/article3.html
http://www.library.ucsb.edu/istl/01-winter/article3.html
http://www.library.ucsb.edu/istl/01-winter/article3.html


[4] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, H. Zhang, PETSc users manual,
Tech. Rep. ANL-95/11 - Revision 3.0.0, Argonne National Laboratory
(2008).

[5] B. Smith et al., External Software Used by PETSc, http://www.mcs.

anl.gov/petsc/petsc-as/miscellaneous/external.html.

[6] L. Armendariz, S. Kientz, Cigma user manual (2009).
URL http://www.geodynamics.org/cig/software/packages/cs/

cigma

7

http://www.mcs.anl.gov/petsc/petsc-as/miscellaneous/external.html
http://www.mcs.anl.gov/petsc/petsc-as/miscellaneous/external.html
http://www.geodynamics.org/cig/software/packages/cs/cigma
http://www.geodynamics.org/cig/software/packages/cs/cigma
http://www.geodynamics.org/cig/software/packages/cs/cigma

	1 Barriers to Sharing
	2 Location and Retrieval
	2.1 Retrieval
	2.2 Location

	3 Configuration, Build, and Run Management
	3.1 Configuration and Build
	3.2 Testing
	3.3 Run verification and code assessment

	4 Outlook

