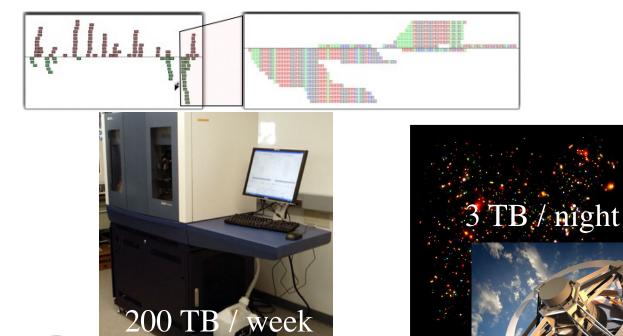
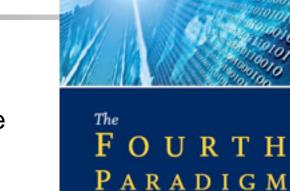
Virtual Appliances, Cloud Computing, and Reproducible Research

Bill Howe, Phd eScience Institute, UW

http://escience.washington.edu


An Observation

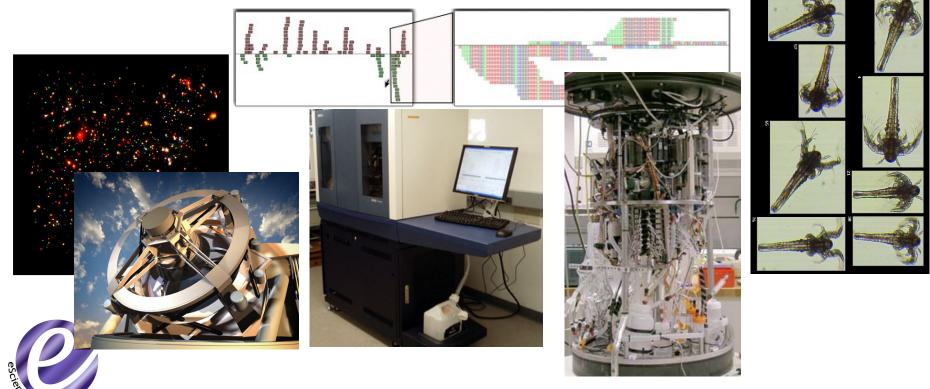
- There will always be experiments data housed outside of a managed environments
 - "Free" experimentation is a beautiful property of software
 - We should be conservative about constraining the process
- There is no difference between debugging, testing, and experiments.
 - When it works, it's an experiment.
 - When it doesn't, it's debugging.
- Conclusion: We need post hoc approaches
 - that can tolerate messy, heterogeneous code and data



eScience is about data

"Fourth Paradigm" Theory, Experiment, Computational Science Data-driven discovery

Bill Howe, eScience Inst


DATA-INTENSIVE SCIENTIFIC DISCOVERY

TO TONY HE'S STONART TANGLE'S AND ERSTIN TOLLS

eScience is about data

Old model: "Query the world" (Data acquisition coupled to a specific hypothesis) New model: "Download the world, query the DB" (Data acquired en masse, to support many hypotheses)

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
- Oceanography: high-resolution models, cheap sensors, satellites
- Biology: lab automation, high-throughput sequencing,

10/5/11

stitute

Bill Howe, UW

Some projects

visualization + cloud
scientific data integration
scalable query processing

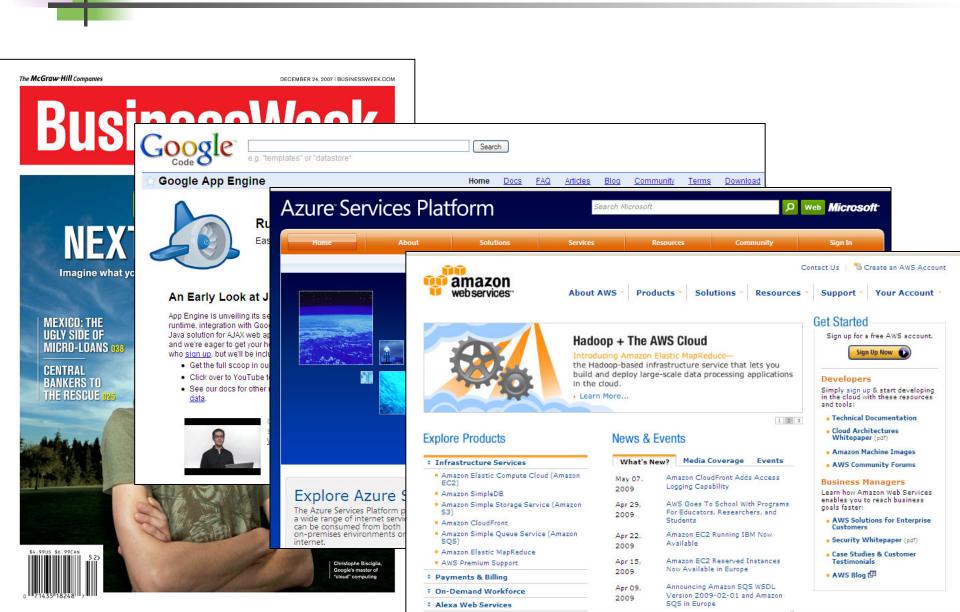
Analytics and Visualization with Hadoop (with Juliana Freire)

 \$380k (\$190k), 2/2009 - 2/2011, NSF Cluster Exploratory 2009 (joint with University of Utah)

eScience and Data-intensive computing (lead: Lazowska)

- \$750k, 10/2009 10/2011 Gordon and Betty Moore Foundation
- Cloud prototypes for the Ocean Observatories Initiative
 - \$107k, 9/2009 12/2009, Subcontract from SDSC/Woods Hole, NSF OOI
- Microsoft Research Jim Gray Seed Grant, 2008 and 2010
 - \$25k, \$40k

3D Visualization in the Cloud

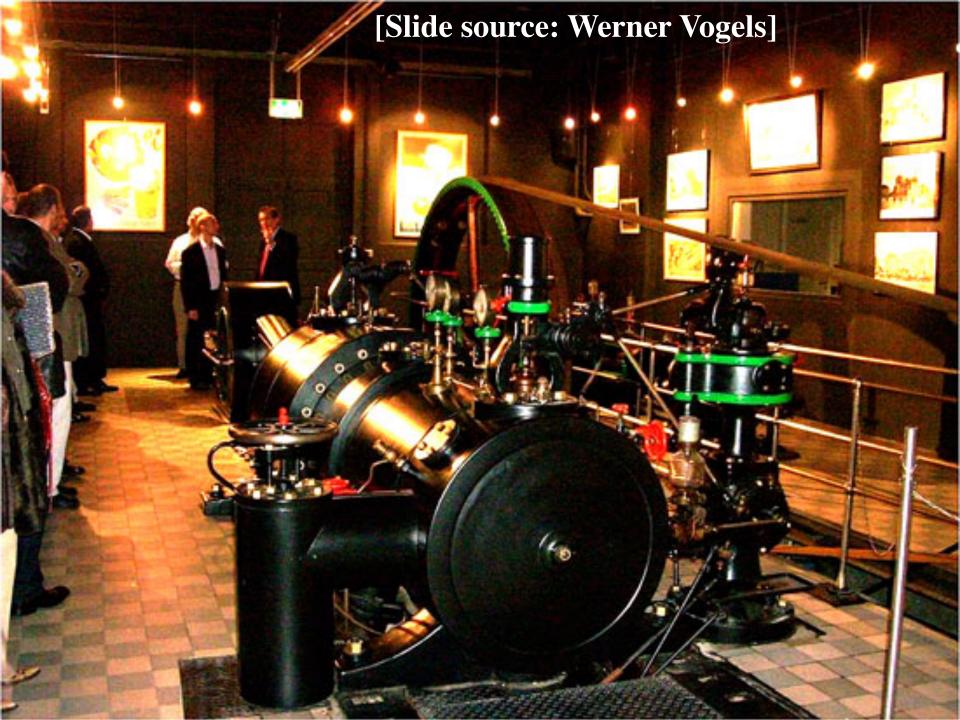

\$117k, 9/10 – 09/12, NSF EAGER through Computing in the Cloud (CiC)
 Hybrid Query Language for a Graph Databases

- \$150k, 9/10 9/12, PNNL XMT project
- SQLShare: Database as a Service with Long-Tail Science
 - \$800k, 3 institutions, NSF

Data Markets (lead: Balazinska)

~\$300k, 4/11 – 4/13, NSF Computing in the Cloud

eScience is married to the Cloud: Scalable computing and storage for everyone


Explore the roles the cloud can play in reproducible research

"What if everything was in the cloud?"

CLOUD IN 2 SLIDES

"Every day, Amazon buys enough computing resources to run the entire Amazon.com infrastructure as of 2001"

-- James Hamilton, Amazon, Inc., SIGMOD 2011 keynote

VIRTUALIZATION ANECDOTE

2007: The Ocean Appliance

Software

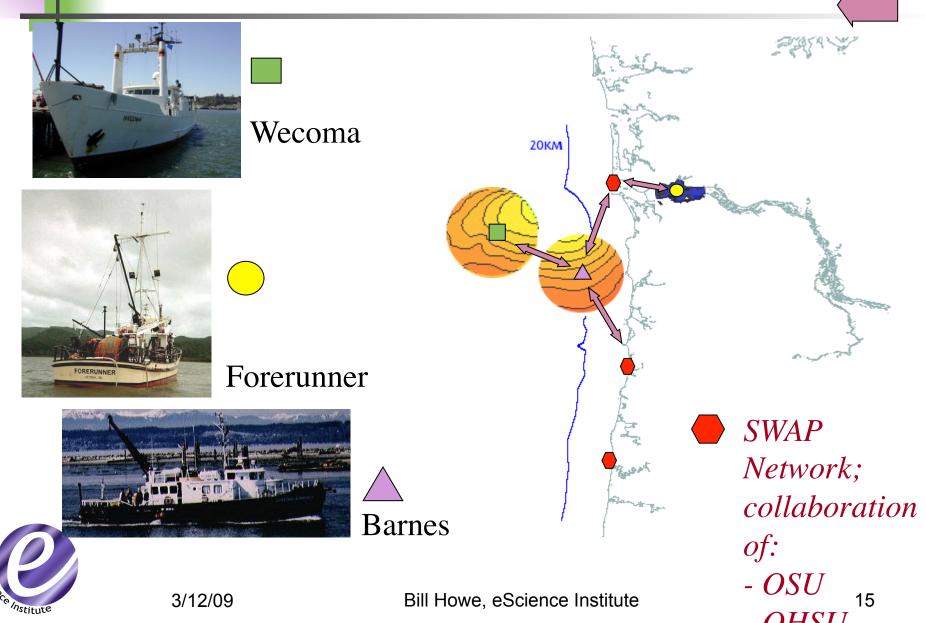
- Linux Fedora Core 6
- web server (Apache)
- database (PostgreSQL)
- ingest/QC system (Python)
- telemetry system (Python)
- web-based visualization (Drupal, Python)

3/12/09

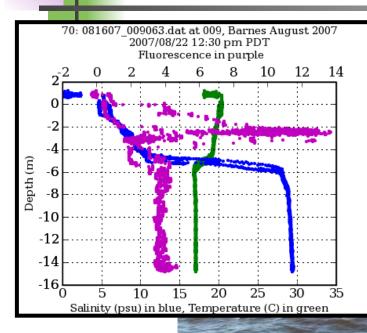
Hardware

- 2.6GHz Dual
- 2GB RAM
- 250 GB SATA
- 4 serial ports
- ~\$500
- ~1' x1' x1.5'

Responsibilities: Shipboard computing


- -Data Acquisition
- -Database Ingest
- -Telemetry with Shore
- -Visualization
- -App Server

Deployment on R/V Barnes



Ship-to-Ship and Ship-to-Shore Telemetry

Event Detection: Red Water

myrionecta rubra

Bill Howe, eScience Institute

nstitute

Code + Data + Environment

 Easier, cheaper, and safer to build the box in the lab and hand it out for free than to work with the ships' admin to get our software running.

 Modern analog: Easier to build and distribute a virtual appliance than it is to support installation of your software.

Cloud + RR Overview

Virtualization = Code + Data + Environment

 Virtualization enables cross-platform, generalized, reliable ad hoc (and post hoc) environment capture

Cloud = Virtualization + Resources + Services

- any code, any data (more structure -> more services)
- scalable storage and compute for everyone
- services for processing big data, various data models
- services for managing VMs
- secure, reliable, available

Challenges

- Costs and cost-sharing
- Data-intensive science

- Offline discussion
 - Security / Privacy
 - Long-term Preservation
 - Cultural roadblocks

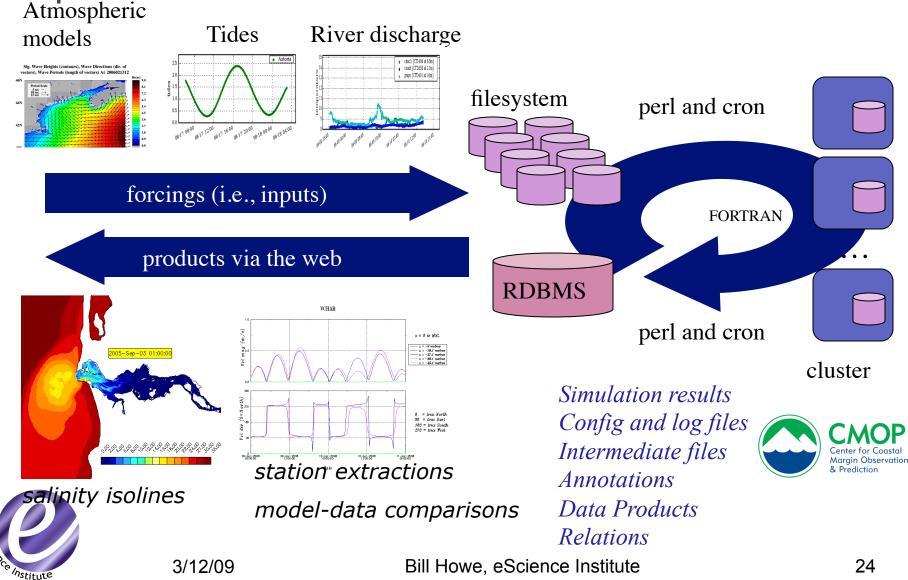
OBSERVATIONS ABOUT CLOUD, VIRTUALIZATION, RR

An Observation

- There will always be experiments data housed outside of a managed environments
 - "Free" experimentation is a beautiful property of software
 - We should be conservative about constraining the process
- There is no difference between debugging, testing, and experiments.
 - When it works, it's an experiment.
 - When it doesn't, it's debugging.
- Conclusion: We need post hoc approaches
 - that can tolerate messy, heterogeneous code and data

An Observation (2)

- Code + Data + Environment + Platform
- "Download it to my laptop" is insufficient
- Ex: de novo assembly
 - 64 GB RAM, 12 cores
- So we need more than VMs we need a place to run them


An Observation (3)

- Experiment environments span multiple machines
- Databases, models, web server

1 VM may not be enough

CMOP: Observation and Forecasting

Amazon CloudFormation

- Ensembles of Virtual Machines
- Launch and configure as a unit

The following template is a simple example that shows how to create an EC2 instance:

```
{
    "Description" : "Create an EC2 instance running the Amazon Linux 32 bit AMI."
    "Parameters" : {
        "KeyPair" : {
            "Description" : "The EC2 Key Pair to allow SSH access to the instance",
            "Type" : "String"
        }
    },
    "Resources" : {
        "Ec2Instance" : {
            "Type" : "AWS::EC2::Instance",
            "Properties" : {
             "KeyName" : { "Ref" : "KeyPair" },
            "ImageId" : "ami-75g0061f"
        }
    },
    "Outputs" : {
        "InstanceId" : {
            "Description" : "The InstanceId of the newly created EC2 instance",
            "Value" : { "Ref" : "Ec2Instance" }
        }
    }
}
```


Observation (3): "Google Docs for developers"

- The cloud offers a "demilitarized zone" for temporary, lowoverhead collaboration
 - A temporary, shared development environment outside of the jurisdiction of over-zealous sysadmins
 - No bugs closed as "can't replicate"
- Example: New software for serving oceanographic model results, requiring collaboration between UW, OPeNDAP.org, and OOI

3/12/09

Waited two weeks for credentials to be established
Gave up, spun up an EC2 instance, rolling within an hour

Similarly, Seattle's Institute for Systems Biology uses EC2/S3 for collaborative development of computational pipelines

Biology

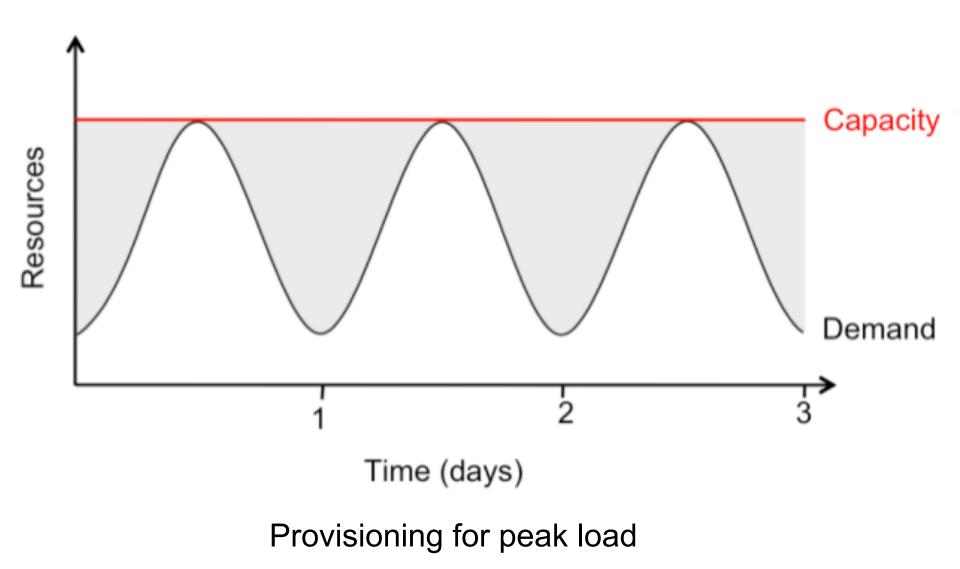
COSTS AND COST-SHARING

Who pays for reproducibility?

- Costs of hosting code?
- Costs of hosting data?
- Costs of executing code?

Answer: you, you, them

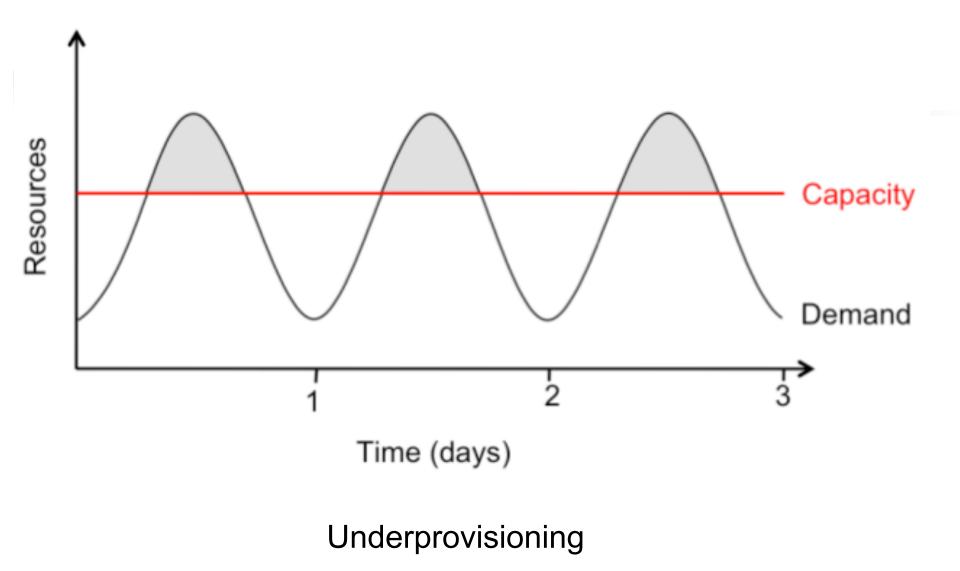
Is this affordable?



Economies of Scale

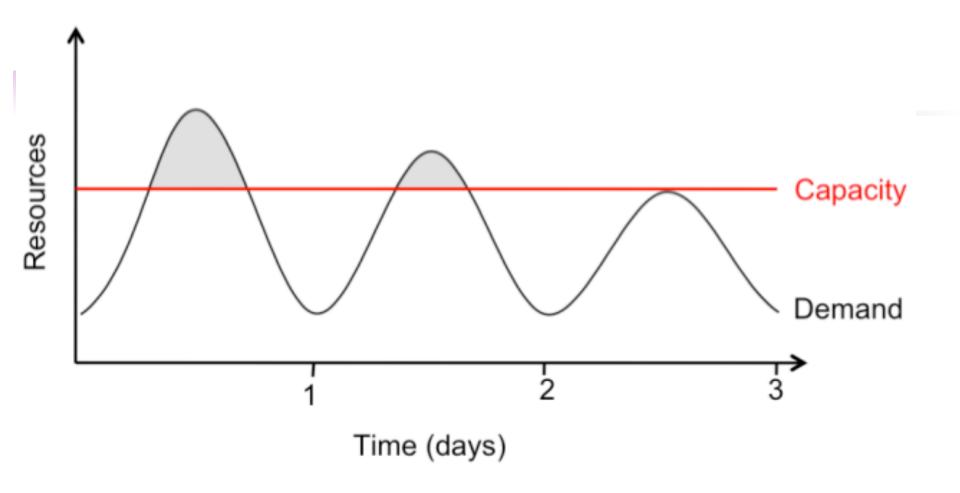
Technology	Cost in Medium-sized DC	Cost in Very Large DC	Ratio
Network	\$95 per Mbit/sec/month	\$13 per Mbit/sec/month	7.1
Storage	\$2.20 per GByte / month	\$0.40 per GByte / month	5.7
Administration	³ 140 Servers / Administrator	>1000 Servers / Administrator	7.1

src: Armbrust et al., Above the Clouds: A Berkeley View of Cloud Computing, 2009


ience Institute

src: Armbrust et al., Above the Clouds: A Berkeley View of Cloud Computing, 2009

3/12/09

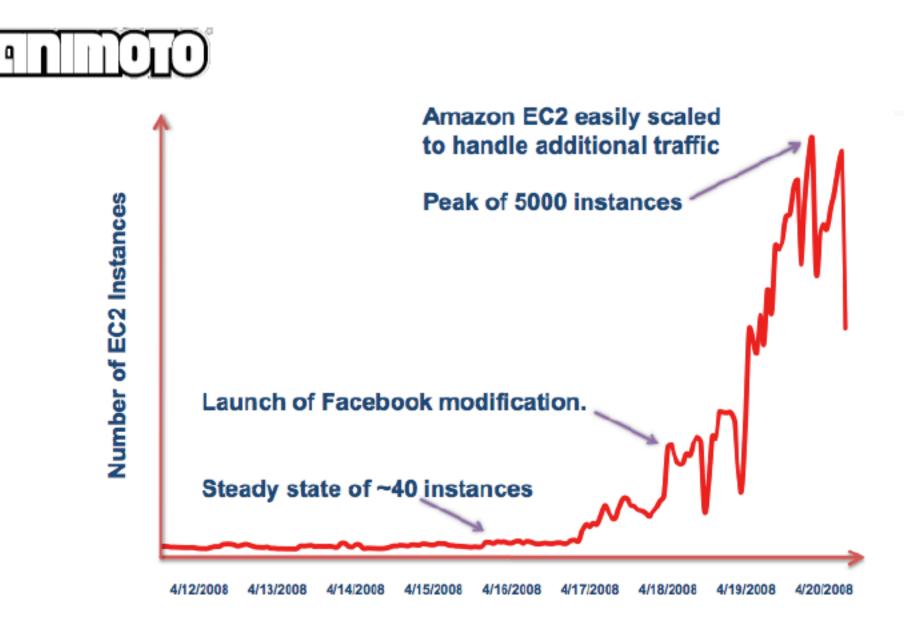


escience Institute

3/12/09

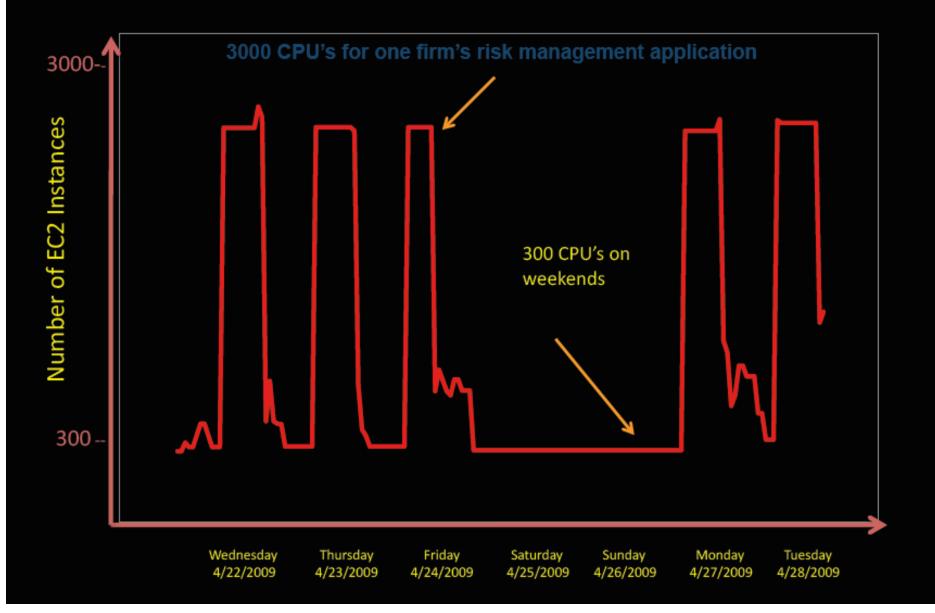
Bill Howe, eScience Institute

src: Armbrust et al., Above the Clouds: A Berkeley View of Cloud Computing, 2009



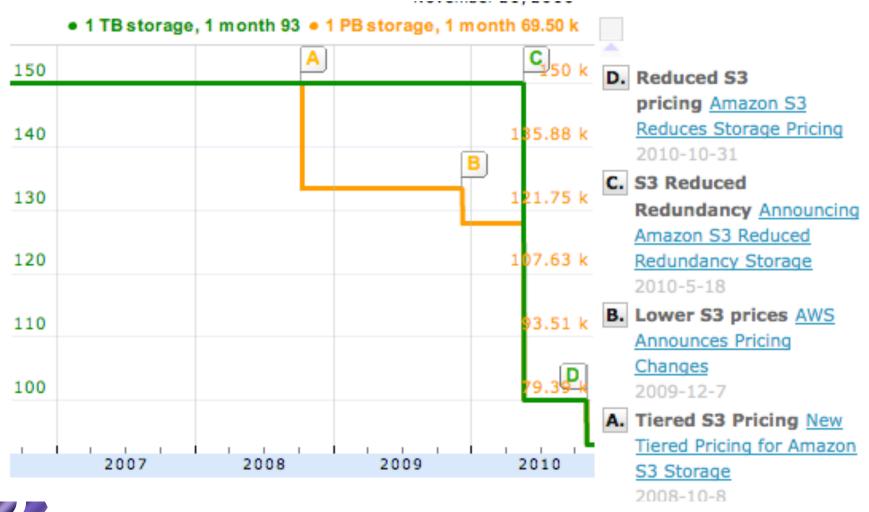
Underprovisioning, more realistic

src: Armbrust et al., Above the Clouds: A Berkeley View of Cloud Computing, 2009


3/12/09

3/12/09

[Werner Vogels, Amazon.com]


[Deepak Singh, Amazon.com]

Change in Price: compute and RAM

I EC2 unit, 3 yrs 455.36 • 1 GB RAM, 3 yrs 378 в А E. High memory 1.48 k 2.50 k instances Announcing С Amazon EC2 High-Memory 2 k 1.21 k Instances 2009-10-26 **D.** Lower price 1.50 k 941.77 reserved D instances New Lower Prices for Amazon EC2 Reserved Instances 1000 671.93 Ε 2009-8-19 C. Reserved instances Amazon 500 402.09 EC2 Introduces 1 1 2007 2008 2009 2010 Reserved Instances 2000-2-11

Change in price: Storage (1TB, 1PB)

Aside: Fix the funny money

Computing equipment incurs no indirect costs

- "Capital Expenditures"
- Power, cooling, administration?
- "Services" are charged full indirect cost load
 Ex: 54% at UW; 100% at Stanford
- So every dollar spent on Amazon costs the PI \$1.54
- Every dollar spent on equipment costs the PI \$1.00, but also costs the university ~\$1.00

Bottom line?

- Buy the equipment if
 - Utilization over 90%
 - You need big archival storage ("data cemetery")
- Otherwise, you probably shouldn't
- Check the pricing calculator

http://calculator.s3.amazonaws.com/calc5.html

Aside: Quantifying the Value of Data

- Ex: Azure marketplace http://www.microsoft.com/windowsazure/marketplace/
- New NSF grant to study data pricing
 - Early results: proof that there is no non-trivial pricing function that can prevent arbitrage and respects monotonicity
- Unpopular idea: Can we sell access to data to fund its preservation?
 - Might be required it's becoming clear we can't keep everything
 - Important data (heavily used data) is "worth more." Which means: easier to amortize the cost of storage.
- Beyond money: Value models may be useful to formalize attribution requirements.
 - If I use your data in my research, I am "charged."
 - Minimal usage is free
 - At some threshold, citation is expected
 - At some theshold, acknowledgement is expected

At some threshold, co-authorship is expected

DATA-INTENSIVE EXPERIMENTS

3/12/09

An Observation on Big Data

The days of FTP are over

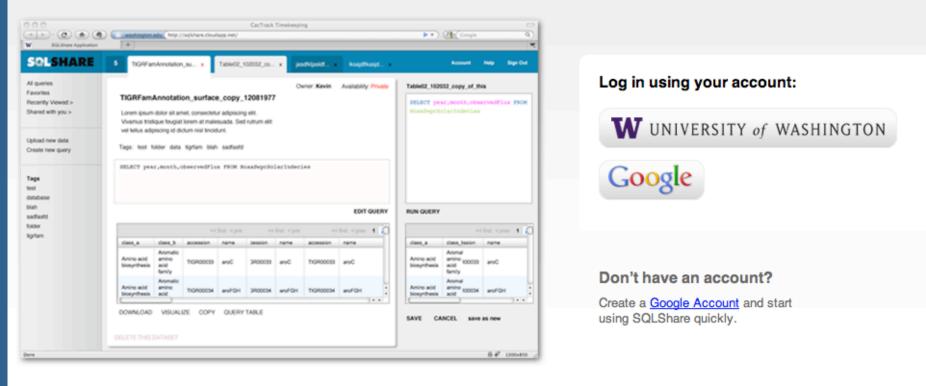
- It takes days to transfer 1TB over the Internet, and it isn't likely to succeed.
- Copying a petabyte is operationally impossible
- The <u>only</u> solution: Push the computation to the data, rather than push the data to the computation
 - Upload your code rather than download the data

Another Observation

- RR tends to emphasize computation rather than data
- Re-executing "canned" experiments is not enough
- Need to support ad hoc, exploratory Q&A, which means:
- Queries, not programs
- Databases, not files

Database-as-a-Service for Science

SQLSHARE	blast_results_	cyanoth x KO	Gs_summary_join	x			Logged in: rk	odner@washingto	on.		
Your datasets All datasets Favorites		nmary_join_mo Last modified: Oct 5, add a description		rkodner@washington.edu	EDITING decodespeciestogenus.tab SELECT * FROM [table_decodespeciestogenus.tab]						
Recently viewed » Shared with you	SELECT JOIN	* FROM [table_N [table_MBARI_K(MBARI_KOGs_sum DG_mokaphyResu	mary] lts.txt] on [t							
Upload dataset New query	Edit q	uery Download	Query dataset	More actions 🔻	Execute query						
	DATASET PRE	,	axcount of totalrows	· 🔛		V (Rows 1 - 100 of	147				
	<< first < pre		<u>5 6 7 8 9</u>	<u>10</u> <u>next > last >></u>	<< first < prev 1 2 3 4 5 next> last>>						
	KOG	hit_count_coasta	hit_count_DCM	hit_count_surface	pattern	phylum	family	common_name	-		
	KOG0003				Acanthamoeba	percolozoa		amoeba			
					Actinidia	streptophyta	actinidiaceae				
	KOODALA	150	004	450	acyrthosiphon	arthropoda	aphididae	pea aphid			
	KOG0018	158	361	150	aedes	arthropoda	culicidae	mosquito			
					alexandrium	dinoflagellata	gonyaulacaceae	dinoflagellate			
	KOODAA	470	400	00	amphidinium	dinoflagellata	Gymnodiniaceae	dinoflagellate			
	KOG0019	170	139	92	anopheles	arthropoda	culicidae	mosquito	1		
	KOG0025	111	191	79	Save Save a			Ca			



http://escience.washington.edu/sqlshare

SQLShare is an easier way to store and share your data. Get answers to your research questions right now.

Upload

Upload any tabular data and start analyzing instantly. No need to install, configure, or design a database.

Modify

Exercise the full power of SQL even with zero programming experience: joins, subqueries, set operations.

Share

Analyze and compare your data collaboratively. Derive new datasets and share them with your colleagues.

Shared	with	you

Recently viewed »

Your datasets All datasets

Favorites

Upload dataset New query

Name	Sharing / Owner	Created •
Amazon: TIGRFam Hit Counts with Sample Metadata, only TE_20174 Hit counts for each TIGRFam protein with	< billhowe@washington.edu	Nov 10, 2010 11:56 AM
SDSS 200006-g4-0100 SDSS 200006-g4-0100	< billhowe@washington.edu	Nov 2, 2010 7:49 PM
Join Training Data from SDSS logs 39 joins extracted from the SDSS logs, plus 40 "bad" joins.	< billhowe@washington.edu	Oct 29, 2010 0:47 PM
SeasonStripColorGeo_bbox add bounding box to SeasonStripColor	< billhowe@washington.edu	Oct 28, 2010 8:50 AM
SeasonStripColor_bbox Adding bounding box	billhowe@washington.edu	Oct 27, 2010 10:47 PM
SeasonStripColorGeo testing geo coordinates	billhowe@washington.edu	Oct 27, 2010 11:07 AM
SeasonStripColor Cast all px columns to floats	billhowe@washington.edu	Oct 25, 2010 4:46 PM
chunk tabls	billhowe@washington.edu	Oct 24, 2010 8:39 PM
Stripe 82 sequence file meta data Metadata for all images in the stripe 82 subset of the sloan digital sky survey (billhowe@washington.edu	Oct 24, 2010 8:35 PM
900000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:15 PM
800000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:13 PM
700000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:12 PM
600000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:10 PM
500000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:09 PM
400000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:07 PM
3900000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:05 PM
3800000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:05 PM
3700000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:03 PM
3600000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 4:01 PM
3500000_chunk.txt description	▲ billhowe@washington.edu	Oct 23, 2010 4:00 PM
3400000_chunk.txt description	billhowe@washington.edu	Oct 23, 2010 3:58 PM

SQLSHARE	2 - Seasons	StripColorGeo x Ama	izon: TIGRFam	Hi x Ar	nazon: TIGF	IFam Hi x							Logged in:	billhowe@wash	ngton.edu
Your datasets All datasets Favorites Recently viewed » Shared with you	Amazon: TIGRFam Hit Counts with Sample Metadata <													ngton.edu	
	<pre>SELECT s.TIGRFam, normalized_hit_count, m.* FROM [rkodner].[Amazon Sample Metadata] m , [rkodner].[Amazon: TIGRFam Hit Counts by Sample] s WHERE m.Sample = s.Sample</pre>														
Upload dataset New query															
												Сору	query Dov	vnload Query o	lataset
	DATAGET DDEV	IEW (Rows 1 - 100 of 22	240												
	<pre><< first < prev 1 2 3 4 5 next> last>></pre>										0.11.11	0	E111 01	0	
	TIGRFam	normalized_hit_count	Sample	Station	Latitude	Longitude	SampleTime	Habitat	Depth	Temperature	Salinity	Oxygen	Filter Size	Sample Volume	Corr
	TIGR00004	1.005687988	TE_20174	SJ0609.003	12.28	-56.12	6/27/2006 8:30:00 AM	West Tropical Atlantic Province; Oligotrophic Open Ocean	5	28.46	31.71	Aerobic	5	110	
	TIGR00004	0	TE_20176	SJ0609.003	12.28	-56.12	6/28/2006 10:00:00 PM	West Tropical Atlantic Province; Oligotrophic Open Ocean	5	28.46	31.71	Aerobic	5	40	A Y

Why SQL?

 Find all TIGRFam ids (proteins least one of three samples (rel

> SELECT col0 FROM [refseq_hma UNION SELECT col0 FROM [est_hma_fa UNION SELECT col0 FROM [combo_hm

EXCEPT

SELECT col0 FROM [refseq_hma INTERSECT SELECT col0 FROM [est_hma_fasta_TGIRfam_refs] INTERSECT SELECT col0 FROM [combo_hma_fasta_TGIRfam_refs]

SQLShare Extension Projects

- SQL Autocomplete
 - (Nodira Khoussainova, YongChul Kwon, Magda Balazinska)
- English to SQL
 - (Bill Howe, Luke Zettlemoyer, Emad Soroush, Paras Koutris)
 - Automatic "Starter" Queries
 - (Bill Howe, Garret Cole, Nodira Khoussainova, Leilani Battle)
 - VizDeck: Automatic Mashups and Visualization
 - (Bill Howe, Alicia Key)
- Personalized Query Recommendation
 - (Yuan Zhou, Bill Howe)
- Crowdsourced SQL authoring
 - (nobody)
- Info Extraction from Spreadsheets
 - (Mike Cafarella, Dave Maier, Bill Howe)
- Data P

SSDBM 2011 SIGMOD 2011 (demo)

SSDBM 2011

Usage

- About 8 months old, essentially zero advertising
- 8-10 labs around UW campus and externally
- 51 unique users (UW and external)
- ~1200 tables (~400 are public)
- ~900 views (~300 are public)
- ~5000 queries executed.
- ~40 GB (these are SMALL datasets!)
- largest table: 1.1M rows
- smallest table: 1 row

Big Data (2)

- Distributed computation is hard
 - VMs aren't enough
- Need native services for big data, not (just) storage
- Elastic MapReduce
 - Integrated with S3 any data in S3 can be processed with MapReduce
- Languages over MapReduce
 - Pig (Relational Algebra, from Yahoo)
 - HIVE (SQL, from Facebook)

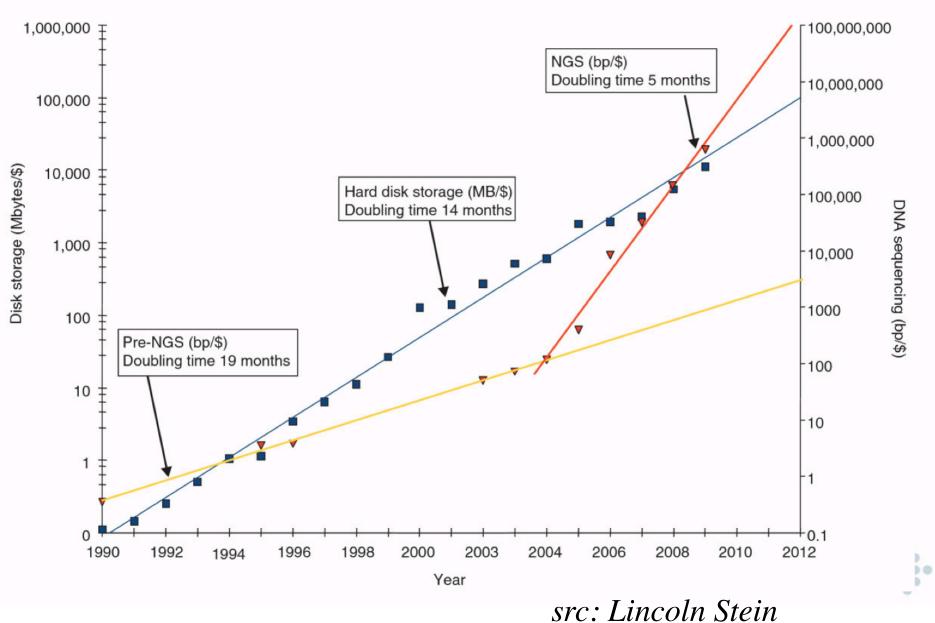
Cloud Services for Big Data

Product	Provider	Prog. Model	Storage Cost	Compute Cost	IO Cost
Megastore	Google	Filter	\$0.15 / GB / mo.	\$0.10 / corehour	\$.12 / GB out
BigQuery	Google	SQL-like	Closed beta	Closed beta	Closed beta
Microsoft Table	Microsoft	Lookup	\$0.15 / GB / mo.	\$0.12 / hour and up	\$.15 / GB out
Elastic MapReduce	Amazon	MR, RA-like, SQL	\$0.093 / GB / mo.	\$0.10 / hour and up	\$0.15 / GB out (1 st GB free)
SimpleDB	Amazon	Filter	\$0.093 / GB / mo.	1 st 25 hours free, \$0.14 after that	\$0.15 / GB out (1 st GB free)

http://escience.washington.edu/blog

3/12/09

Recommendations (last slide)

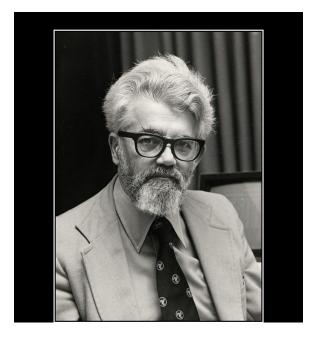

- Cloud is absolutely mainstream
- Try it. Get your computing out of the closet.
- Create VMs. Cite them. (If cost is the issue, contact me)
- For data-intensive experiments, data hosting is still expensive, but you're not likely to do better yourself.
- Prices are dropping, new services are released literally monthly
- Tell your university to stop charging overhead on cloud services
- My opinion: In 10 years, everything will be in the cloud
 - "I think there is a world market for maybe 5 computers"

Region:	R L	aunch Instance	nstance Actions						
US East (Virginia) 🔻	View	ving: All Instance	es	🗘 All In	stance	Types 🛟	Search		
> EC2 Dashboard		Name 🧐 Instance		AMI ID		Root Device Type		Stat	tus
INSTANCES	Θ	OOI Shared D	🍯 i-832a69eb	ami-4205	ie72b	ebs	m1.small		stopped
> Instances	•	Tableau Demc	👼 i-a96b26c1	ami-7608ea1f ami-d54fa0bc		ebs	m1.large	0	stopped
> Spot Requests		Bill's Developr	藚 i-bb0a66d0			ebs	m1.small	0	stopped
Reserved Instances	Ø	FPSpec Test I	🥃 i-2b8dbb40	ami-71		Management	(@		stopped
IMAGES		Sarah's Astror	🥃 i-940d16ff	ami-b2	Conn	e Management lect			stopped
> AMIs > Bundle Tasks	•	Physics/Astror	🥃 i-857468ef	ami-ee	Get a	system Log		• •	
		RasDaMan Te	藚 i-a6a03acb	ami-4e	Creat	te Image (EBS A	MI)		stopped
ELASTIC BLOCK STORE	8	SciDB Test Se	i-fae08b97	ami-12	Chan	ge Security Grou			stopped
> Snapshots	•	VizDeck Deve	藚 i-c909bda5	ami-2c		ge Source / Des ch More Like Thi		0	running
NETWORKING & SECURITY	•	sqlshare dev (藚 i-b9d6bfd5	ami-cc	Disas	ssociate IP Addre	0	running	
> Security Groups	Θ	Astro Toolkit T	🅃 i-d7b49abb	ami-12		ge Termination F /Change User Da		0	stopped
> Elastic IPs	Θ	sqlshare test	🥃 i-ebb28387	ami-46		ge Instance Type	running		
 Placement Groups Load Balancers 	1 E(C2 Instance sele	ected		Chan		***		
> Key Pairs		EC2 Instan	ce: i-2b8dbb		Instance Lifecycle				

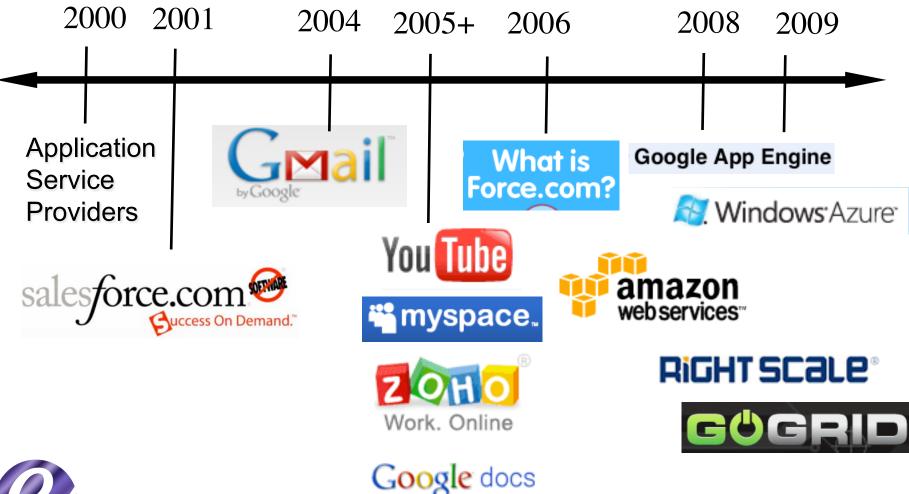
NextGen Sequencing a Game-Changer

Software as a Service

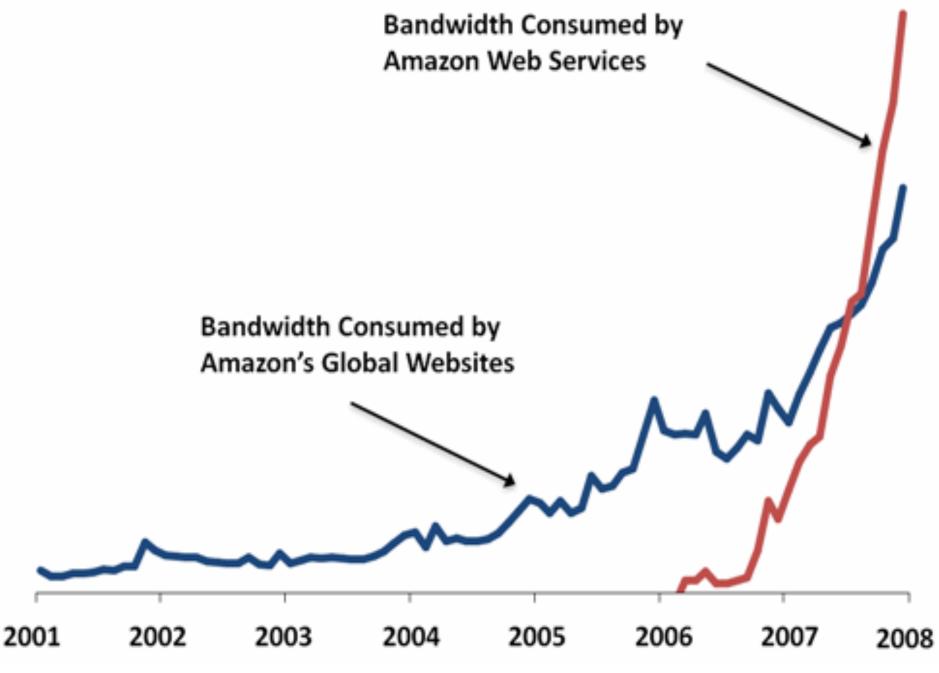
Platform as a Service Mindows Azure



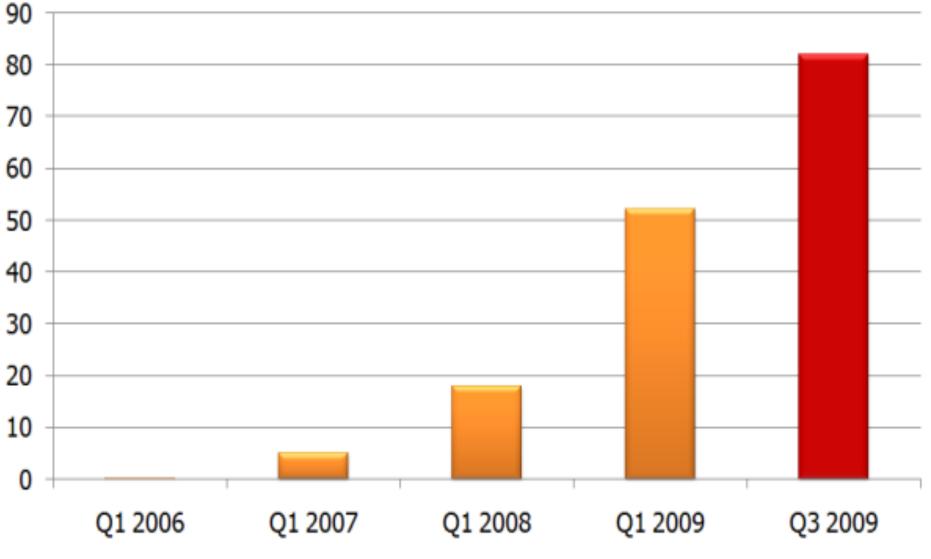
Infrastructure as a Service


"... computing may someday be organized as a public utility just as the telephone system is a public utility... The computer utility could become the basis of a new and important industry."

-- John McCarthy Emeritus at Stanford Inventor of LISP


1961

Timeline



3/12/09

[Werner Vogels, Amazon.com]

82 Billion Objects in Amazon S3

[Werner Vogels, Amazon.com]

The University of Washington eScience Institute

- Rationale
 - The exponential increase in physical and virtual sensing tech is transitioning all fields of science and engineering from *data-poor to data-rich*
 - Techniques and technologies include
 - Sensors and sensor networks, data management, data mining, machine learning, visualization, cluster/cloud computing
 - If these techniques and technologies are not widely available and widely practiced, UW will cease to be competitive
- Mission
 - Help position the University of Washington and partners at the forefront of research both in modern eScience techniques and technologies, and in the fields that depend upon them.
- Strategy
 - Bootstrap a cadre of Research Scientists
 - Add faculty in key fields
 - Build out a "consultancy" of students and non-research staff
- Funding
 - \$650/year direct appropriation from WA State Legislature
 - augmented with soft money from NSF, DOE, Gordon and Betty Moore Foundation

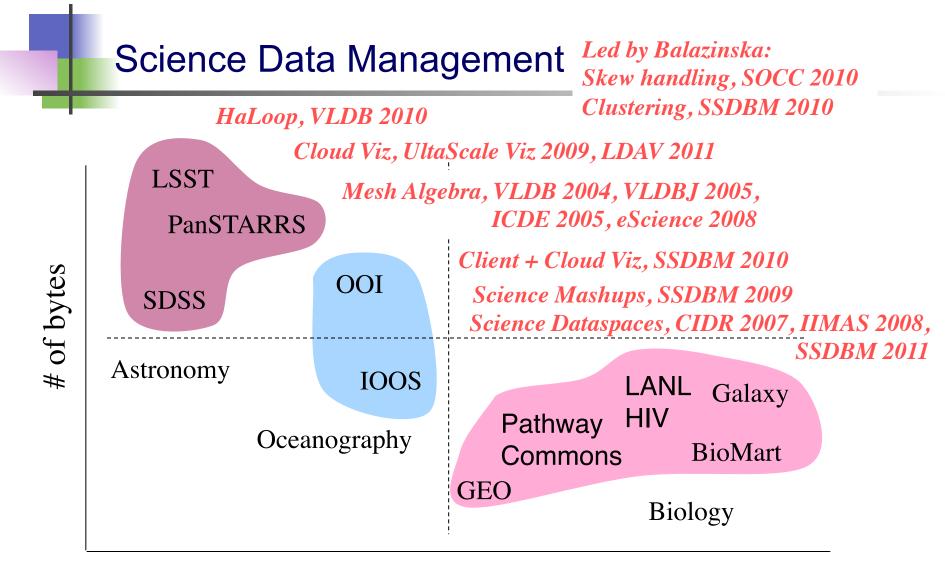
eScience Data Management Group

**Bill Howe, Phd (databases, visualization, data-intensive scalable computing, cloud)

Staff and Post Docs

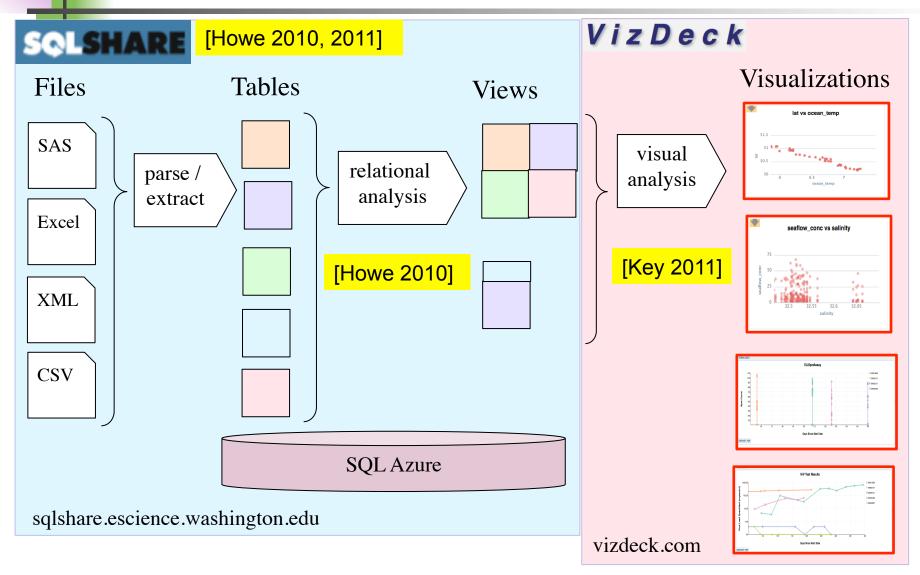
- Keith Grochow (Visualization, HCI, GIS)
- **Garret Cole (cloud computing (Azure, EC2), databases, web services)
- Marianne Shaw, Phd (health informatics, semantic web, RDF, graph databases)
- Alicia Key (visualization, user-centered design, web applications)

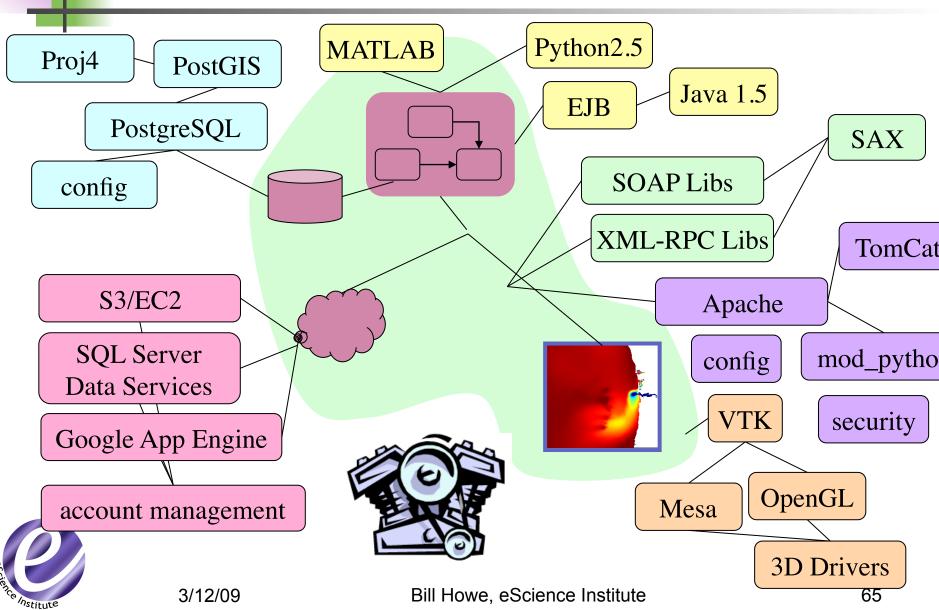
Students


- Nodira Khoussainova (4th yr Phd), databases, machine learning
- Leilani Battle (undergrad), databases, performance evaluation
- Yuan Zhou (masters, Applied Math), machine learning, ranking, recommender systems
- YongChul Kwon (4th yr Phd), databases, DISC, scientific applications
- Meg Whitman (undergrad)

Partners

- **UW Learning and Scholarly Technologies (web applications, QA/support, release mgmt)
- **Cecilia Aragon, Phd, Associate Professor, HCDE (visualization, scientific applications)
- Magda Balazinska, Phd, Assistant Professor, CSE (databases, cloud, DISC)
- Dan Suciu, Phd, Professor, CSE, (probabilistic databases, theory, languages)


** funded in part by eScience core budget


of sources, # of apps

Integrative Analysis

Why Virtualization? (1)

Division of Responsibility

Q: Where should we place the division of responsibility between developers and users?

Need to consider skillsets

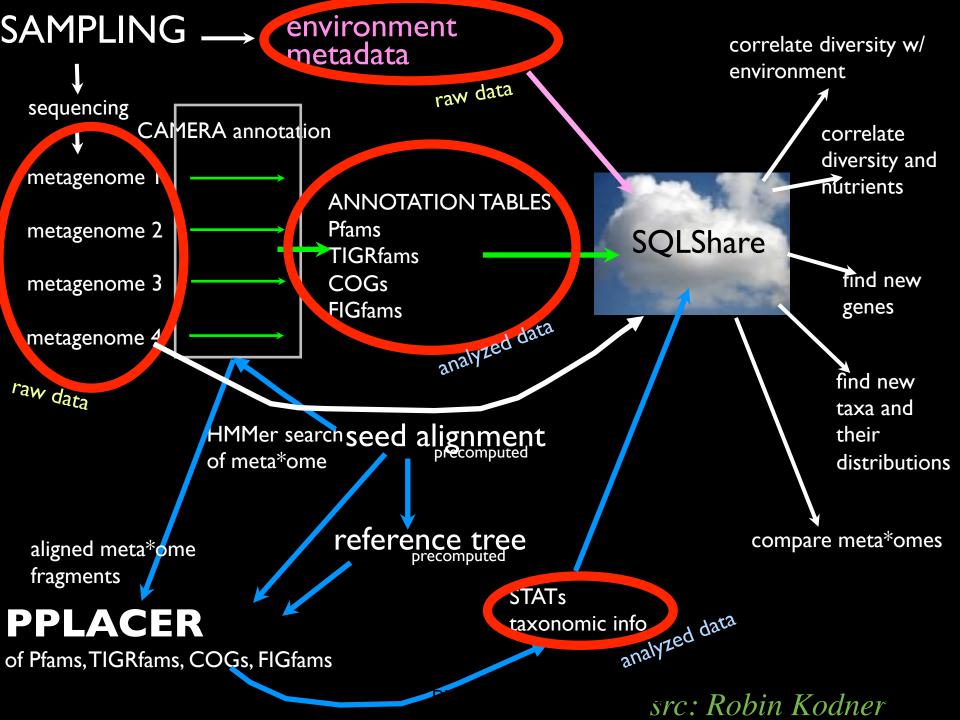
- Can they install packages?
- Can they compile code?
- Can they write DDL statements?
- Can they configure a web server?
- Can they troubleshoot network problems?
- Can they troubleshoot permissions problems?

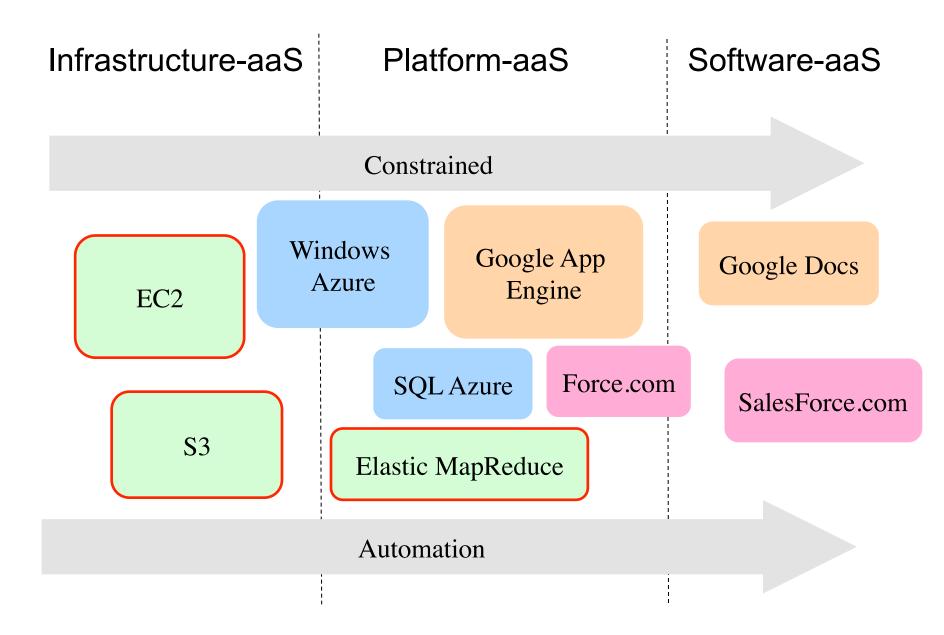
Frequently the answer is "No"

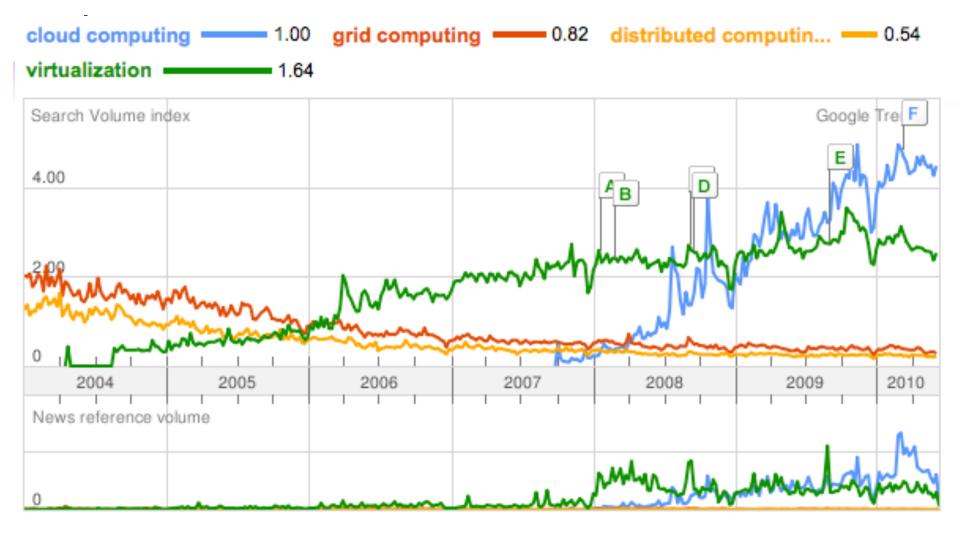
Plus: Tech support is hard. Usually easier to "fix it yourself."

Division of Responsibility

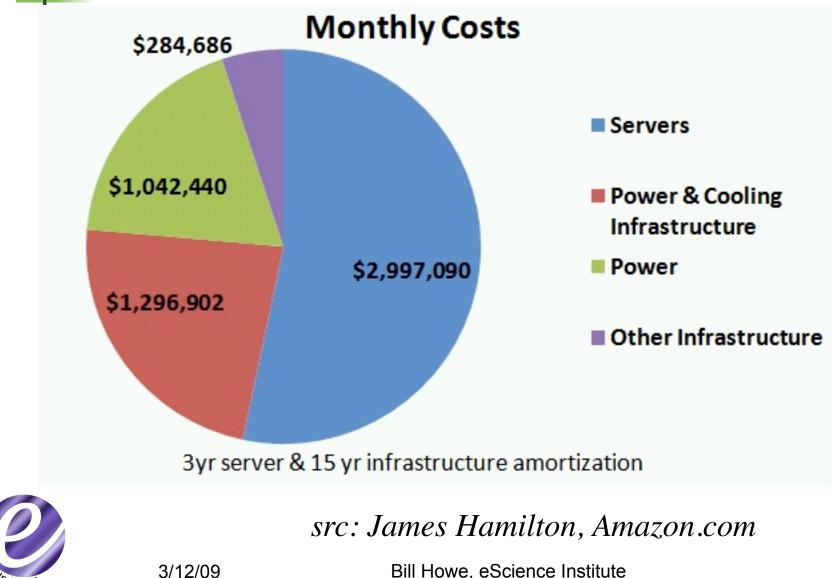
Is there anything your peers **are** willing to do to get your software working?

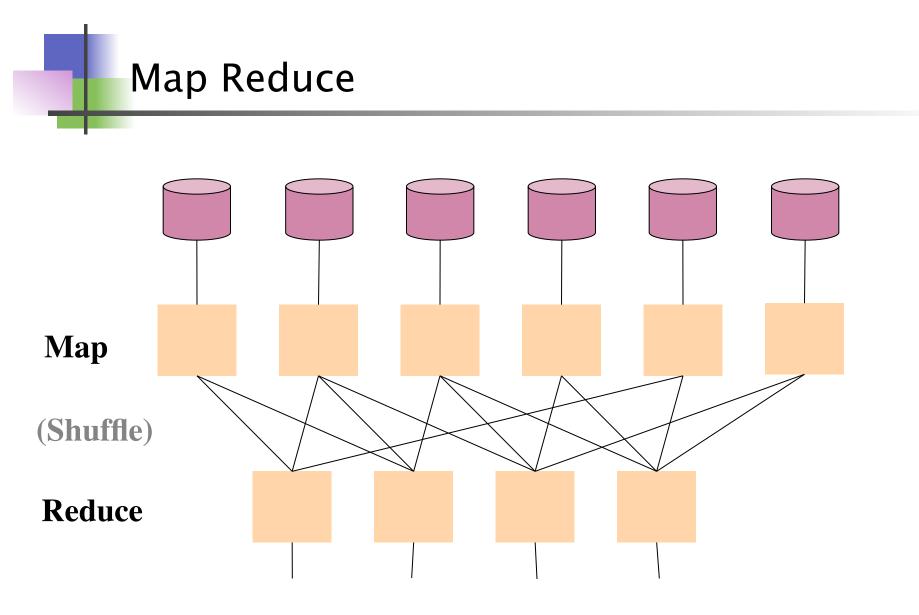





Gold standard

- Your experimental procedures are completely unaffected.
- Others use your exact environment as it was at the time of the experiment.





Economies of Scale

